

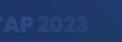
Revolution in PCI

ADVANCEMENTS IN THE TREATMENT OF HEART DISEASE

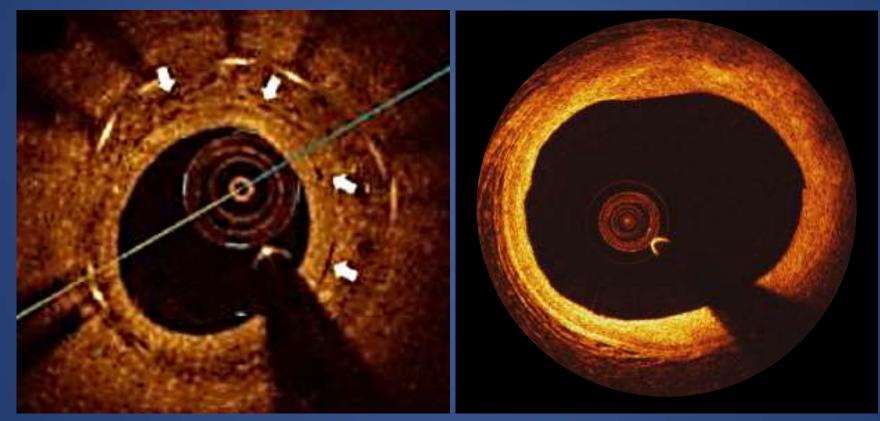
BALLOON ANGIOPLASTY

BARE METAL STENT

2001

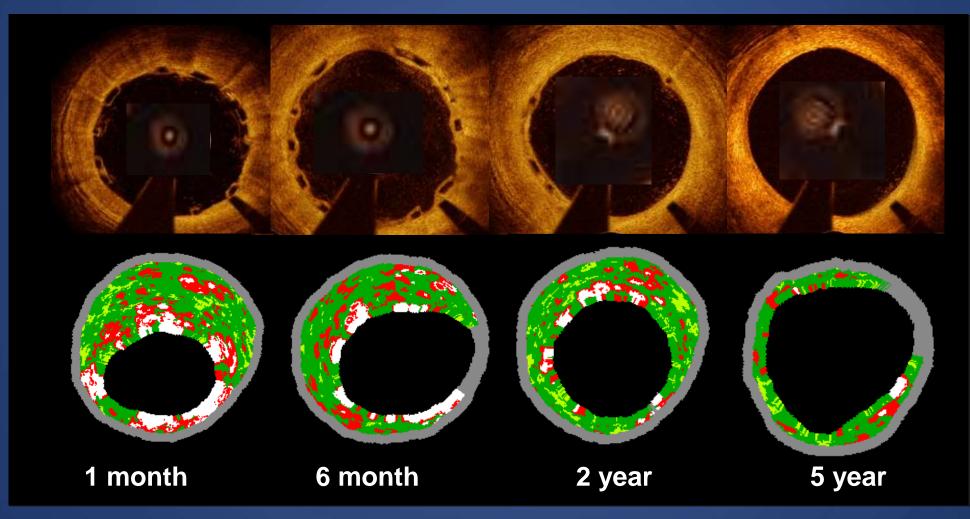

DRUG ELUTING STENT

DISSOLVING STENT – ABBOTT'S ABSORBTM

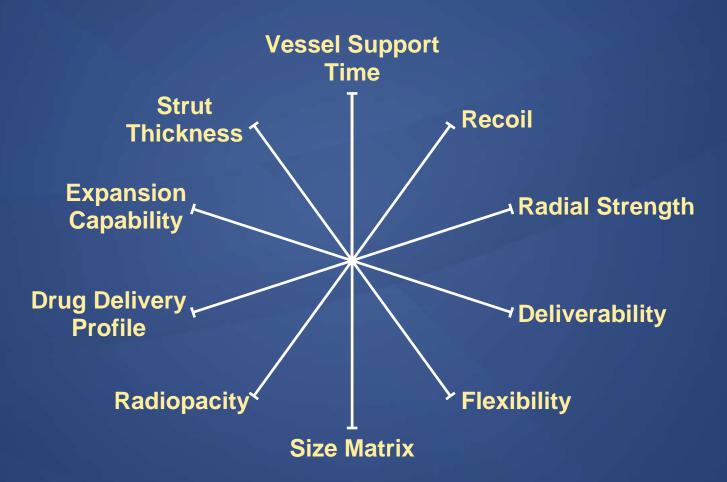


Human Imaging at 5 Year

Metallic DES



Atherosclerosis 2014;237:23e29


Plaque Stabilization and Lumen Enlargement

28th TCTAP 2023

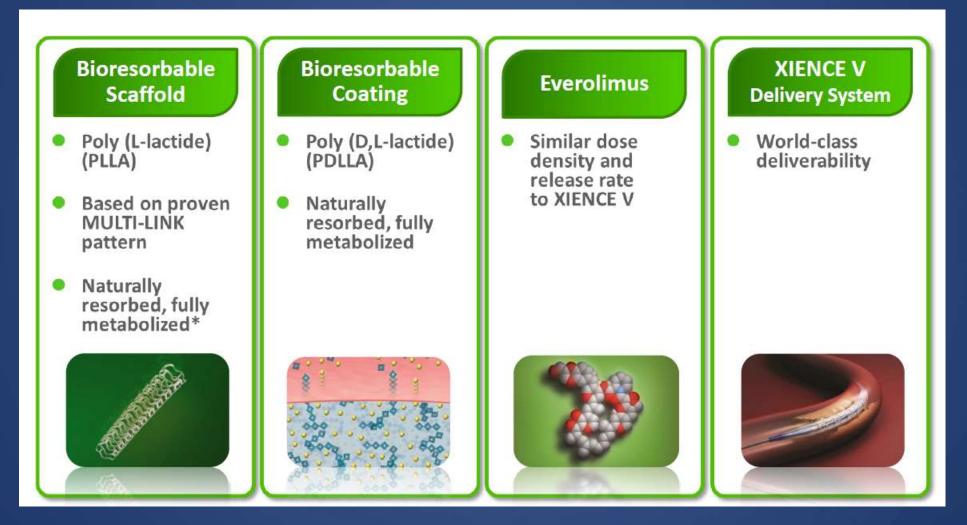
CVRF

BRS Design Considerations

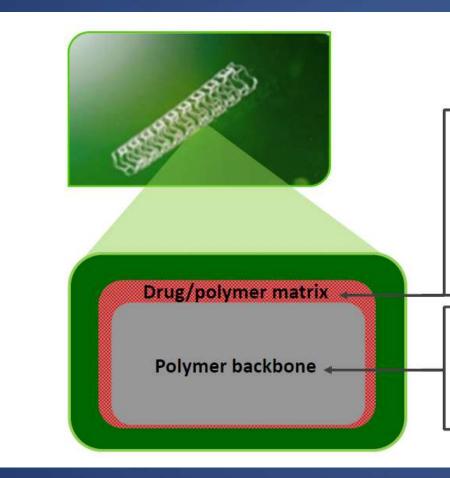
Design and Structure of Clinically Tested BRS

Scaffold (manufacturer)	Strut material	Coating material	Eluted drug	Radial support	Resorptio (months)
Metallic					
AMS-1 (Biotronik)	Mgalloy	None	None	Weeks	<4
DREAMS-1 (Biotronik)	Mg alloy with some rare metals	PLGA	Paclitaxel	3-6 months	9
DREAMS-2 (Biotronik)	Mg alloy with some rare metals	PLLA	Sirolimus	3-6 months	9
Polymeric					
Igaki-Tamai (Kyoto					
Medical)	PLLA	None	None	6 months	24-36
BVS 1.0 (Abbott Vascular)	PLLA	PDLLA	Everolimus	Weeks	18-24
BVS 1.1 (Abbott Vascular)	PLLA	PDLLA	Everolimus	6 months	24-48
DESolve (Elixir)	PLLA	None	Myolimus	N/A	12-24
REVA (Reva Medical)	PTD-PC	None	None	3-6 months	24
ReZolve (Reva Medical)	PTD-PC	None	Sirolimus	4-6 months	4-6
ReZolve2 (Reva Medical)		None	Sirolimus		
ART 18AZ (ART)	PDLLA	None	None	3-6 months	3-6
Fortitude (Amaranth)	PLLA	None	None	3-6 months	3-6
IDEAL BTI (Xenogenics)	Polylactide and salicylates	SA/AA	Sirolimus	3 months	6-9

Iqbal J et al. Eur Heart J 2014;35:765


Design of BRSs in Clinical or Preclinical USC

Company / Device	Design of the biorsorbable device	Strut thickness, (µ m)	Polymer / Drug	Absorption time	Late loss, (mm)
Kyoto Medical/ Igaki-Tamai	33335	170	PLLA	2 years (y)	0.48 (6m)
Biotronik / DREAMS		125	Mg alloy (AMS-4) / sirolimus	4 to 6 months (m)	0.68 (6m)*
Abbott / ABSORB BVS	HBBBBBBBBBBBBBBBBB Ditterterterterterterterterterterterterter	150	PLLA / everolimus	2у	0.19 (6m)
Reva Medical / ReSolve	STREET, STREET	200	Tyrosine poly carbonate with iodine / sirolimus abluminal	2у	1.81 (6m)
-/ BTI		200	Salicylic acid into polymer (PLA or adipic acid) / sirolimus	6m	NA
Elixir / DESolve		150	PLLA / novolimus	1 to 2y	NA

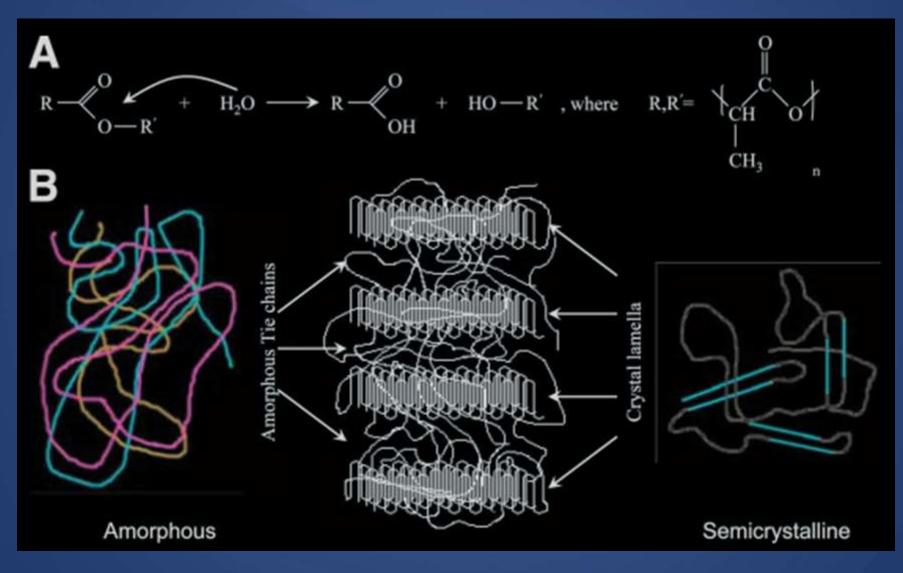

BRS System

TCTAP 2023

Bioresorbable Polymer

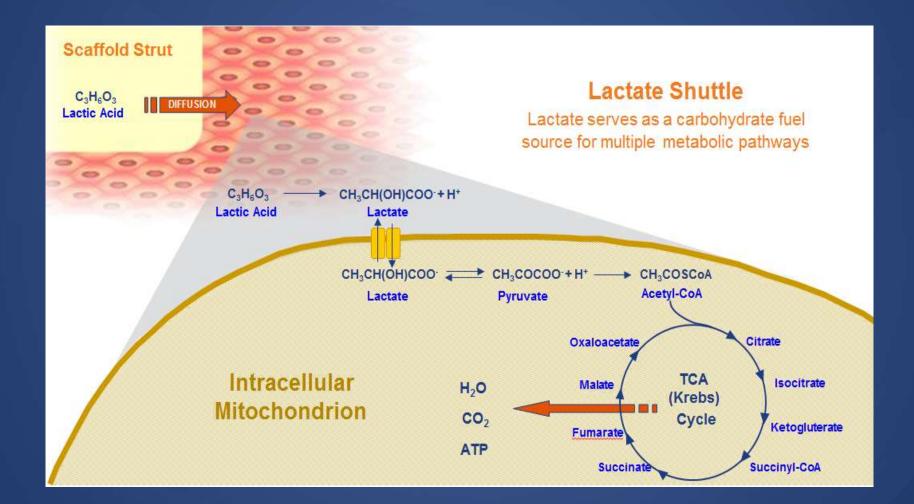
Everolimus/PDLLA Matrix Coating

- Thin layer
- Amorphous (non-crystalline)
- 1:1 ratio of Everolimus/PDLLA matrix
- Conformal coating, 2-4 μm thick
- Controlled drug release


PLLA Scaffold

- Semi-crystalline
- Provides device structure
- Processed for required radial strength

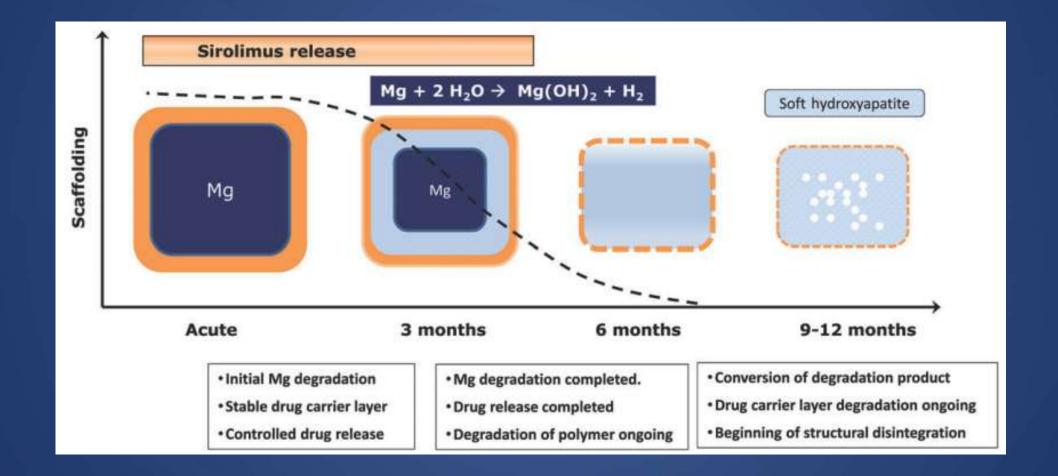
Poly-L-Lactic Acid (PLLA)



28th TCTAP 2023

Onuma Y et al. Circulation 2011;123:779

Degradation of PLLA

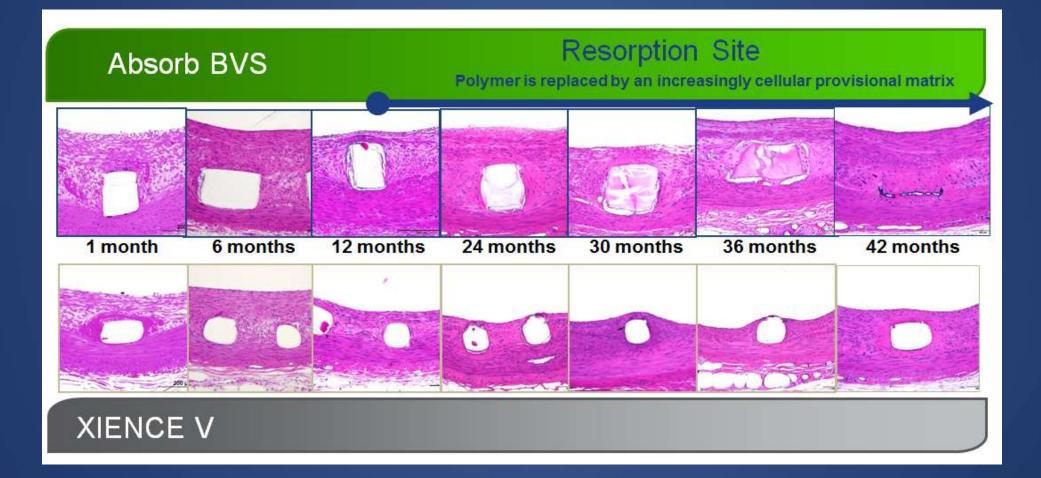


28th TCTAP 2023

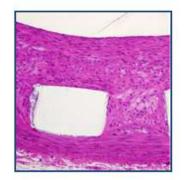
Philp, A., et.al. J. Exp. Biol. 2005; 208: 4561-4575

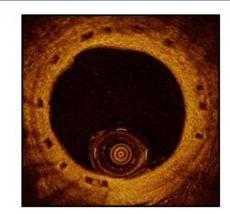
Bioresorption of Metal scaffold

Iqbal J et al. Eur Heart J 2014;35:765

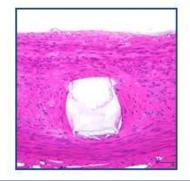

Resorption: Vascular response

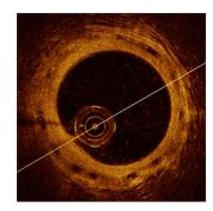
Resorption: Vascular response

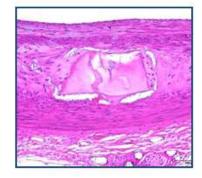


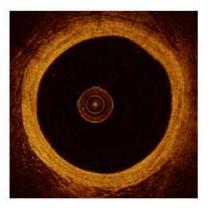


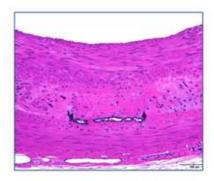
Resorption: Vascular response




6 months

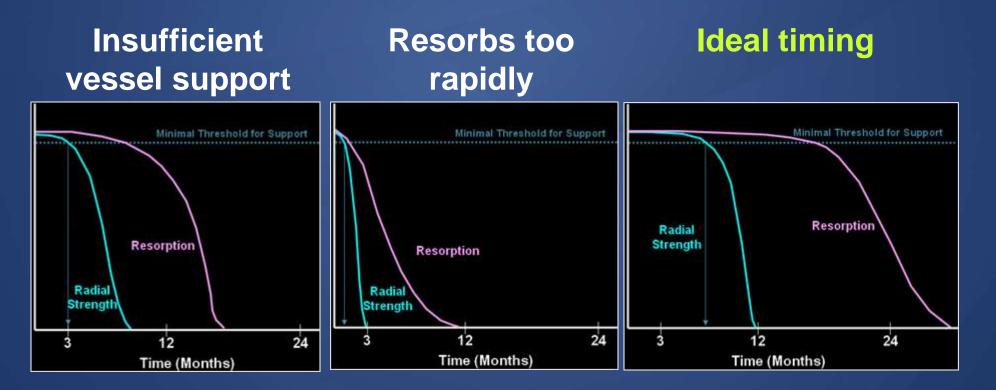



24 months

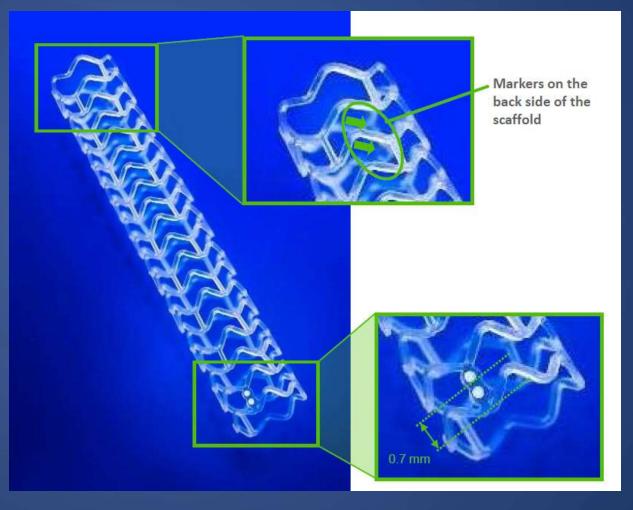


36 months

42 months

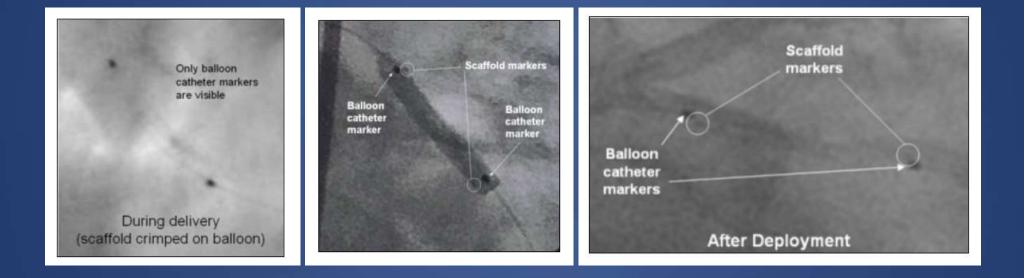


The timing of scaffold degradation and resorption are critical for directing the vessel toward optimal healing, functionality and stability



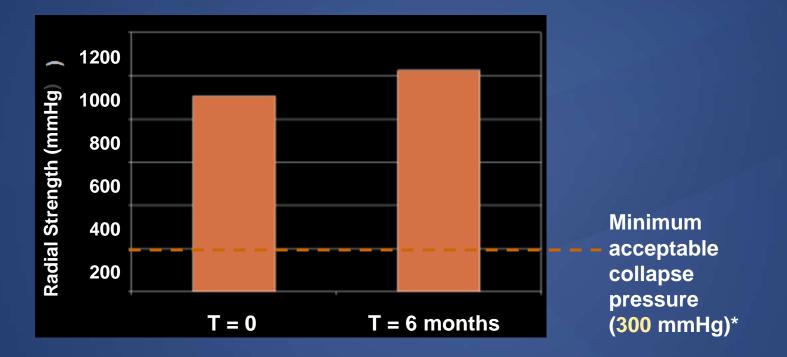
28th TCTAP 202:

Scaffold Marker Beads


- Two pairs of platinum marker – one pair at each end of the scaffold
- The marker on the scaffold lie near the inner edge of the balloon markers

Locating Scaffold Marker Beads

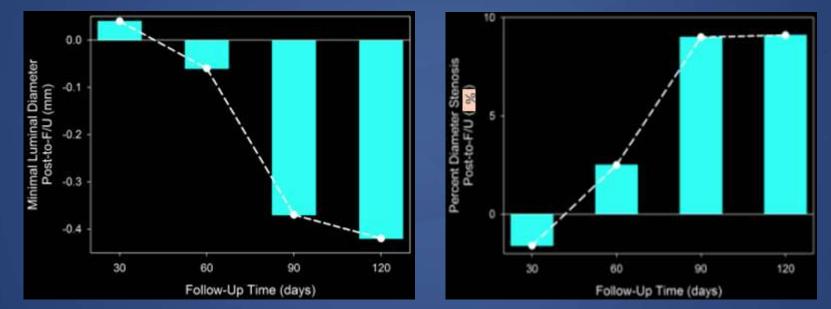
How Much Radial Strength is Needed?


 Industry standards for stent radial from animal studies:

- Maximal transluminal pressures of canine artery: 200 – 275 mmHg
- Human arteries pressures around 100 mmHg
- Stents withstand the difference between transluminal and intraluminal pressures: up to 175 mmHg
- Adding a factor of safety the minimum acceptable collapse pressure for stents is 300 mmHg

Radial Strength

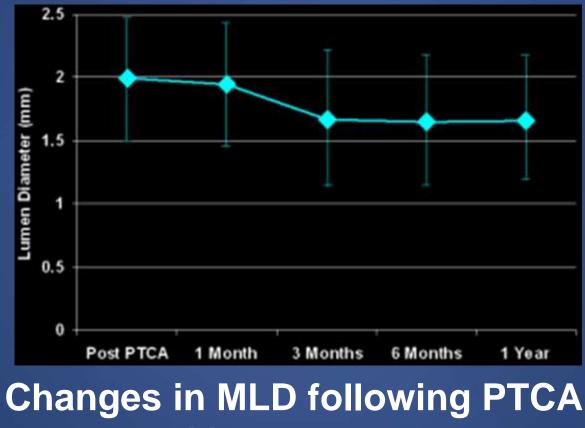
BVS maintains adequate support for at least as long as is needed



Agrawal, CM, et.al. Biomaterials. 1992; 13: 176-182

What is the Minimum Duration of Radial Support? Quantitative angiographic study in 342

consecutive patients


The lumen appears to stabilize 3 months after PTCA

Serruys PW, et al., Circulation 1988; 77: 361

What is the Minimum Duration of Radial Support?

stabilize at 3 months

Temperature Requirements

- Polymer based scaffold
- Polymers' performance is affected by temperature, as temperature affects the polymer material characteristics
- BVS needs to be maintained between -20°C and 25°C at all
 - Transported, received and stored in a temperature controlled environment

Available Sizes of the Absorb BRS

	Lengths (mm)					
		8	12	18	23	28
Diameters (mm)	2.5	X	X	X	X	X
	3.0	X	X	X	X	X
	3.5		X	X	X	X

Leaving Nothing Behind !

- Initial scaffolding similar to metallic stents
- Restore vessel to natural state with normal function and healing response
 - Preservation of vascular geometry
 - Restoration of vascular physiology
 - Eliminate source of inflammation/irritation
 - Vessel free for future interventions
- Prevention of very late thrombotic events
- Passivation of vulnerable plaques

Comparison of BRS with Other Angioplasty Technique/Devices

	РОВА	BMS	DES	BRS
Acute occlusion	+		-	-
Acute recoil	+		-	- 1
Acute ST	+	+	+	+
Subacute ST	+/-	+	+	+
Late ST		+	+	+/- ?
Constrictive remodeling	-	+	+	+
Neointimal hyperplasia	-	++	+	+/-
Expansive remodeling	+	-		+
Late luminal enlargement	+	-	-	+
Vasomotion Restoration	+			+

Iqbal J et al. Eur Heart J 2014;35:765

Limitations of BRS

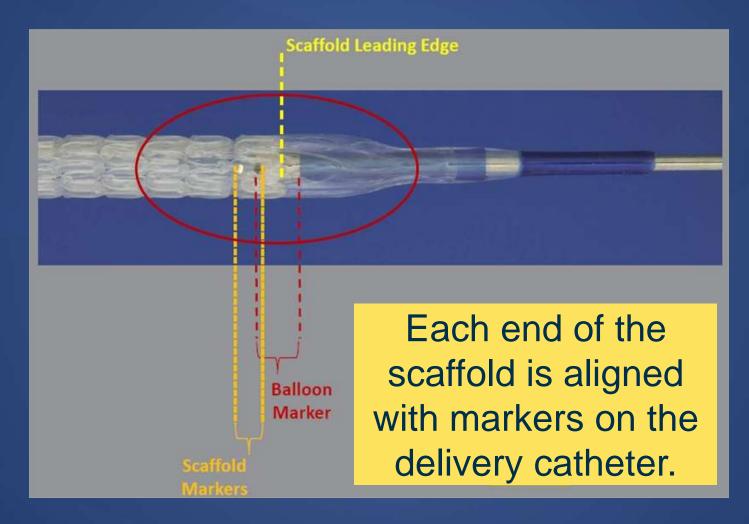
Thickness of strut

- Post-dilatation with a balloon diameter more than 0.5 mm bigger than the scaffold diameter
- Limited sizes and diameters currently available
- Slow and prolonged dilatations
- Lack of visibility on X-ray imaging

Technical Considerations of BRS Implantation

Unique characteristics of BRS Considering technical aspects

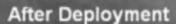
 The struts are not visible under fluoroscopy or cine. Only IVUS or OCT will allow visualization of struts.


 To provide sufficient radial strength, BVS has thicker struts (156µm) than contemporary metallic stents (~80µm). This results in larger crossing profile (1.4mm for Absorb) and reduced deliverability or trackability.

Over-dilatation can result in strut disruption and loss of radial strength.

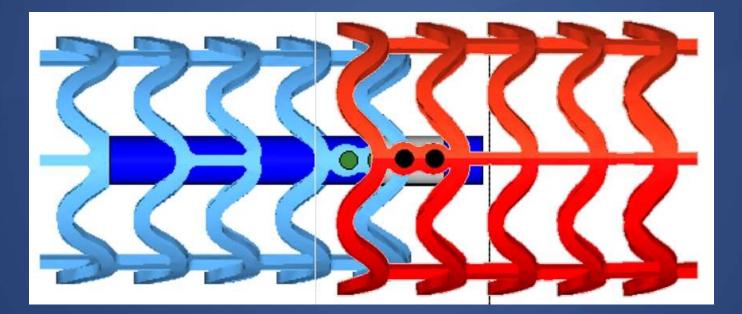
Scaffold mounted on the balloon

Use balloon markers to position scaffold



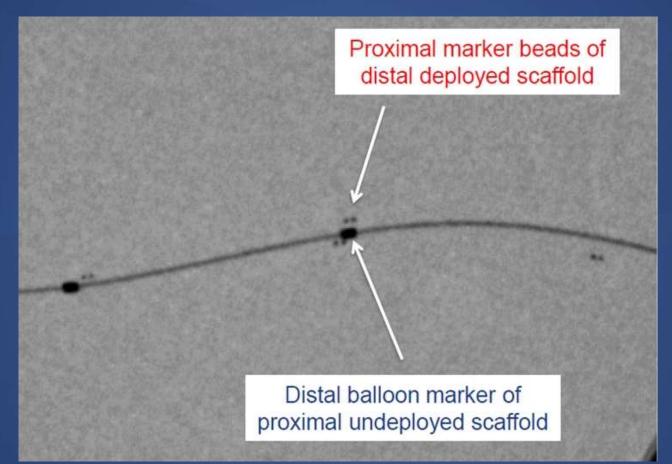
Scaffold design Locating Scaffold Marker Beads

Scaffold markers Balloon catheter markers



Scaffold overlap

The distal balloon marker (BLUE) lines up with the proximal marker beads of the implanted scaffold

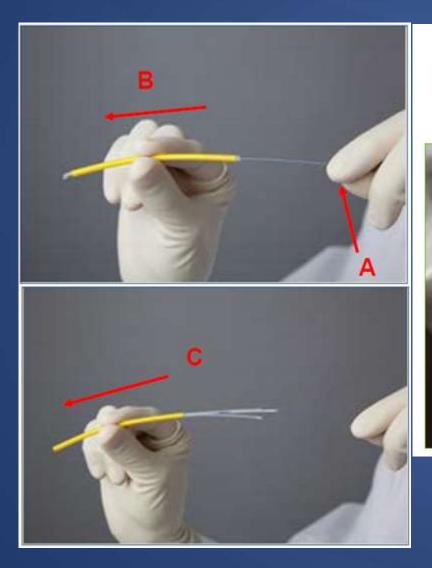


Balloon Marker under Scaffold Markers The result will be ~ 1mm of overlap

Scaffold Overlap

Line up the balloon marker band with the deployed scaffold marker beads; this will result in ~1mm overlap

TCTAP 2023


Scaffold design

Guiding Catheter Compatibility

- At least \geq 6F / 0.070" / 1.8mm minimum inner diameter
- If challenges with crossing the lesion are anticipated
 - consider an extra back-up support guide catheter
 - consider a more supportive guide-wire
- Do not insert a guide sheath into a guiding catheter, as doing so will result in an inner diameter that is too small for use with Absorb

Dual Layer Sheath Removal

 DO NOT grab/pinch both the outer and inner sheaths together at the most proximal end as damage to the proximal balloon seal may occur.

28th TCTAP 2023

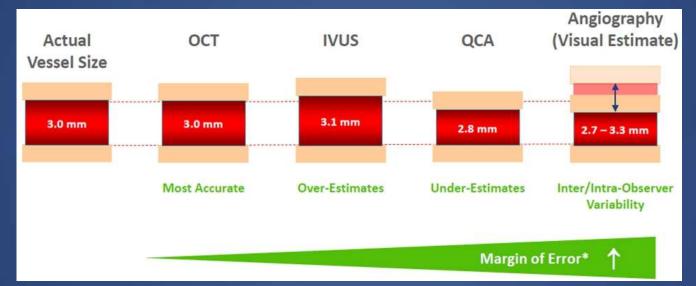
Optimal Implantation of ABSORB <u>5P</u>

Prepare the lesion
 Properly size the Vessel
 Pay Attention to Expansion Limits
 Post-Dilate with a Non-Compliant Balloon
 Prescribe Dual Anti-Platelet Therapy

Prepare the lesion

- Absorb has a larger crimped profile than XIENCE; therefore, lesion preparation is key.
- Pre-dilatation is strongly recommended.
- Use of a non-compliant balloon is recommended.
- For highly resistant/calcified lesions, consider the use of cutting balloons, scoring balloons, or rotablator to optimize scaffold deployment.

Crossing the lesion


- Following pre-dilatation, consider evaluating the vessel pathway with the deflated pre-dilatation balloon to assess to deliver scaffold to the lesion.
- An unexpanded scaffold should not be reintroduced into the artery once it has been pulled back into the guiding catheter or removed from the body.
- Use constant forward pressure to cross the lesion (Avoid the Dottering technique)

Properly size the vessel

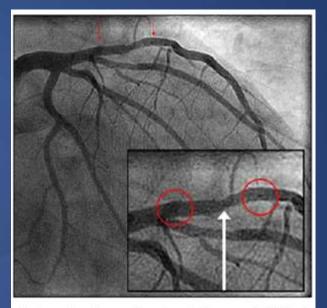
• IVUS or OCT are strongly recommended to size the vessel, particularly during the initial experience with the device

- When visually estimating vessel size, use the pre-dilatation balloon size when inflated in the lesion to more accurately size the vessel.
- It is recommended to administer a standard dose of intracoronary nitroglycerine prior to finalizing the RVD within the target zone.

Pay attention to expansion limits

- It is important to stay within the expansion limits to avoid strut disruption and minimize the loss of radial strength.
- Scaffold expansion limits are nominal scaffold diameter + 0.5mm

	2.5 m	m	3	.0 mi	n	3	.5 m	m	
	ATM kPa	\odot	ATM	kPa	\bigcirc	ATM	kPa	\odot	ĺ
	6 (NOM) 608	2.53 mm	6	608	2.94 mm	6 (NOM)	608	3.50 mm	L
	7 709	2.60 mm	7 (NOM)	709	3.02 mm	7	709	3.59 mm	
	8 811	2.66 mm	8	811	3.08 mm	8	811	3.66 mm	
	9 912	2.71 mm	9	912	3.15 mm	9	912	3.73 mm	
	10 1013	2.76 mm	10	1013	3.20 mm	10	1013	3.78 mm	
Clinical Trial	11 1115	2.79 mm	11	1115	3.24 mm	11	1115	3.83 mm	
	12 1216	2.82 mm	12	1216	3.28 mm	12	1216	3.87 mm	
Average	13 1317	2.86 mm	13	1317	3.31 mm	13	1317	3.91 mm	Γ
Deployment	14 1419	2.89 mm	14	1419	3.34 mm	14	1419	3.94 mm	Г
Pressure*	15 1520	2.91 mm	15	1520	3.37 mm	15	1520	3.98 mm	
	16 (RBP) 1621	2.94 mm	16 (RBP)	1621	3.40 mm	16 (RBP)	1621	4.01 mm	
	17 1723	2.97 mm	17	1723	3.43 mm				Г
	18 1824	2.99 mm	18	1824	3.46 mm				


Maintain target deployment pressure for 30 seconds

Post-Dilate with an NC Balloon

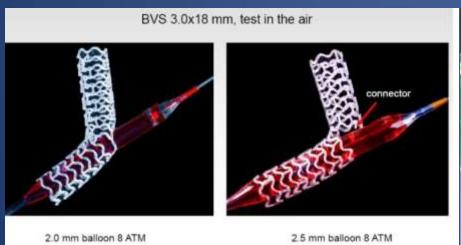
 If residual stenosis is >10%, then consider using a noncompliant balloon that is up to + 0.5 mm lager than the nominal scaffold diameter (i.e. use a 3.5 mm NC balloon with a 3.0 mm scaffold)

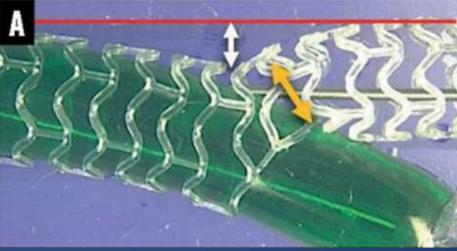
Sub-optimal result - should be post-dilated

Delivery system balloon removal Troubleshooting

 If resistance is experienced upon removal of the Absorb delivery system balloon from the deployed scaffold, re-inflate the balloon up to nominal pressure, deflate, and change pressure to neutral as balloon folds relax and soften allowing for easier withdrawal

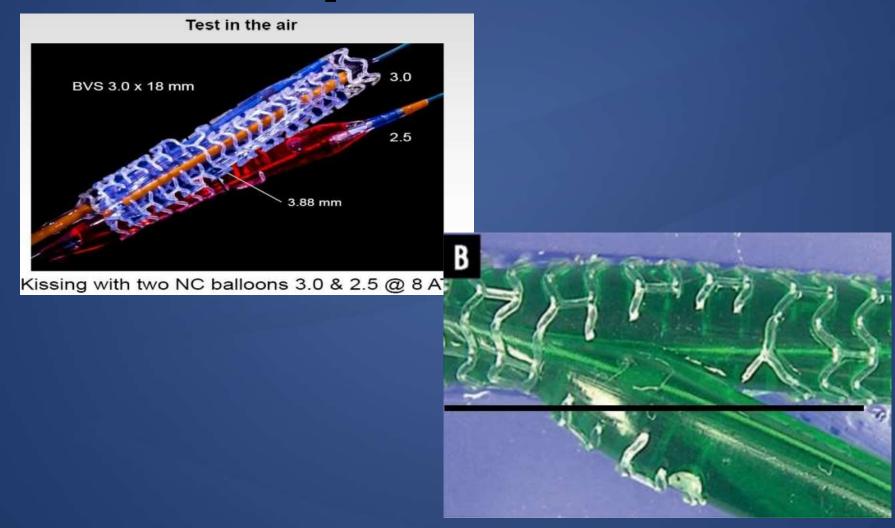
Negative Pressure


Neutral Pressure



Treating side branches

- If a clinical decision is made to dilate a side branch, use sequential balloon inflations
- Avoid scaffolding across any side branch ≥ 2.0mm
- Always finish with main branch balloon inflation

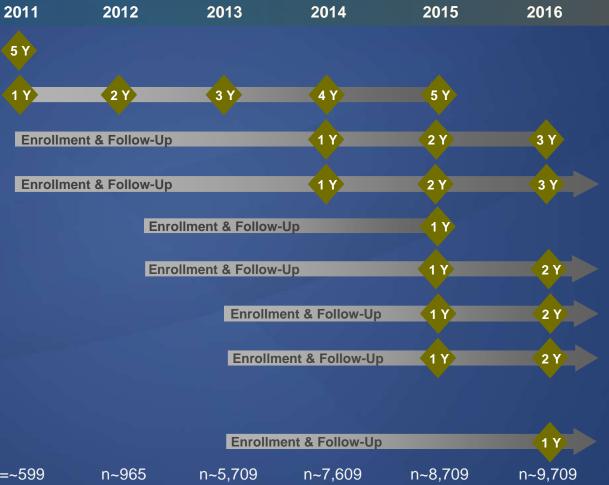

Post-dilate with an NC balloon

- High pressure post-dilatation with a non-compliant balloon is ideal (<10% RS)
 - To achieve optimal scaffold apposition
 - Do not dilate the scaffold beyond its maximum expansion limit
- If residual stenosis is >10%, then consider using a non-compliant balloon that is up to + 0.5 mm lager than the nominal scaffold diameter
- Use imaging guidance (IVUS or OCT)

Conventional kissing is prohibited

DAPT prescription

- Consider current ACC/AHA and ESC DAPT guidelines
- More potent P2Y12 inhibitors (Ticagrelor or Prasugrel) are highly recommended for complex lesions requiring extensive lesion prep, ACS/STEMI patients, and overlapped scaffolds



Clinical outcomes of BRS

Absorb Comprehensive Abbott Vascu lar Sponsored Clinical Trial Program

ABSORB Cohort A n = 30; FIM

ABSORB Cohort B n = 101; FIM

ABSORB EXTEND n = ~800, Registry

ABSORB II n = ~501, International RCT

ABSORB FIRST n = ~1,800, International Registry

> ABSORB III n = ~2,250, US Pivotal RCT

ABSORB Japan n = ~400, Japan Pivotal RCT

ABSORB China n = ~440, China Pivotal RCT

> **ABSORB IV*** *n* = ~3,000, US RCT

UK Registry n = 1000, UK Registry Total Pts Studied

ied n=~599

ABSORB Cohort A Introduction

	30 subjects (Non-randomized) 4 sites in Europe & New Zealand							
Clinical				1				
Follow-Up (Months)	6	12	18	24	36	48	60
QCA, IVUS, C MSCT	OCT, IVUS VH							

Study Objective	First In Man, Single Arm – safety/performance
Endpoints	Typical PCI clinical and imaging endpoints
Treatment	Single, <i>de novo</i> native coronary lesion in a vessel with a reference vessel diameter of 3.0 mm
Device Sizes	3.0 x 12 mm scaffolds (3.0 x 18 mm scaffolds available after enrollment start and used in 2 pts)

ABSORB Cohort A Baseline Demographics and Lesion Characteristics

Male	58%
Diabetes Mellitus	4%
Location of Lesions	
LAD	50%
LCX	23%
RCA	27%
Lesion Classification	
Type B1	65%
Type B2	35%
Pre-Procedure	
Lesion length (mm)	8.66 ± 3.97
RVD (mm)	2.78 ± 0.47
MLD (mm)	1.10 ± 0.26
DS (%)	59 ± 12

Adapted from Serruys, PW, ABSORB Cohort A 2-year IVUS and OCT results; ACC 2009.

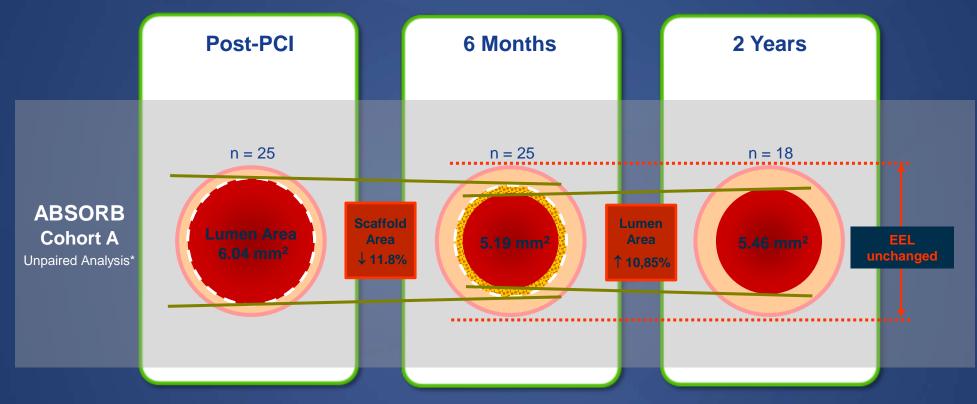
ABSORB Cohort A Excellent Long-Term Data Out to 5 Years

ABSORB Cohort A Clinical Results at Each Phase: Intent to Treat

Hierarchical	6 Months 30 Patients	1 year 29 Patients**	2 Year 29 Patients**	5 Year 29 Patients**
Ischemia Driven MACE***	1 (3.3%)*	1 (3.4%)*	1 (3.4%)*	1 (3.4%)*
Cardiac Death	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
МІ	1 (3.3%)*	1 (3.4%)*	1 (3.4%)*	1 (3.4%)*
Q-Wave MI	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Non Q-Wave MI	1 (3.3%)*	1 (3.4%)*	1 (3.4%)*	1 (3.4%)*
Ischemia Driven TLR	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
by PCI	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.%)
by CABG	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.%)

Serruys, ABSORB Cohort A 5-year results; TCT, 2011

No scaffold thrombosis by ARC or Protocol


28th TCTAP 2023

Adapted from Serruys, PW, ABSORB Cohort A 2-year IVUS and OCT results; ACC 2009.

ABSORB Cohort A

Temporal Lumen Dimensional Changes, Per Treatment

Late lumen loss at 6 months mainly due to reduction in scaffold area
Very late lumen gain noted from 6 months to 2 years

TCTAP 2023

Adapted from Serruys, PW, ABSORB Cohort A 2-year IVUS and OCT results; ACC 2009.

ABSORB Cohort B Introduction

101 subjects (Non-randomized) 12 sites in Europe, Australia, New Zealand							
Group B1 (<i>n</i> = 4	45)						
Imaging Follo	w-Up (N	Months)	6	12	18	24	36
Group B2 (<i>n</i> = 56) QCA, IVUS, OCT, IVUS VH MSCT							
Study Obje	ctive	First In Man, Sing	le Arm – sa	afety/pe	erforma	nce	
Endpoin	ts	Typical PCI clinica	al and imag	ging en	dpoints	5	
Treatme	nt	Up to 2 <i>de novo</i> lesions in different epicardial vessels Reference vessel diameter of 3.0 mm, lesions ≤ 14 mm in length					
Device Siz	zes	3.0 x 18 mm devic	es				

ABSORB Cohort B Baseline Lesion Characteristics/ Acute Success

Location of lesion (%)	
LAD	43
RCA	33
LCX	22
Ramus	1
Lesion classification (%)	
Α	1
B1	55
B2	40
С	4
Clinical Device Success (%)	100
Clinical Procedure Success (%)	98

Serruys, PW., ABSORB Cohort B 9-month and 1-year results; AHA 2010.

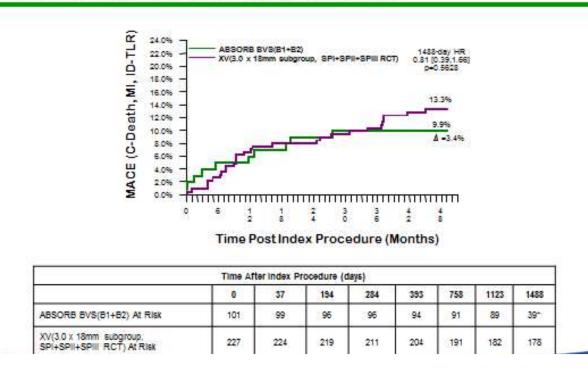
ABSORB Cohort B Clinical Results - Intent to Treat

Neg Lliegerskiegt	30 Days	1 Year	2 Years	3 Years
Non-Hierarchical	N = 101	N = 101	N = 100*	N = 100*
Cardiac Death %	0	0	0	0
Myocardial Infarction % (n)	2.0 (2)	3.0 (3)	3.0 (3)	3.0 (3)
Q-wave MI	0	0	0	0
Non Q-wave MI	2.0 (2)	3.0 (3)	3.0 (3)	3.0 (3)
Ischemia driven TLR % (n)	0	4.0 (4)	6.0 (6)	7.0 (7)
CABG	0	0	0	0
PCI	0	4.0 (4)	6.0 (6)	7.0 (7)
Hierarchical MACE % (n)	2.0 (2)	6.9 (7)	9.0 (9)	10.0 (10)
Hierarchical TVF % (n)	2.0 (2)	6.9 (7)	11.0 (11)	13.0 (13)

MACE: Cardiac death, MI, ischemia-driven TLR, TVF: Cardiac death, MI, ischemia-driven TLR, ischemia-driven TVR

No scaffold thrombosis by ARC or Protocol

ABSORB Cohort B1 Clinical Results - Intent to Treat

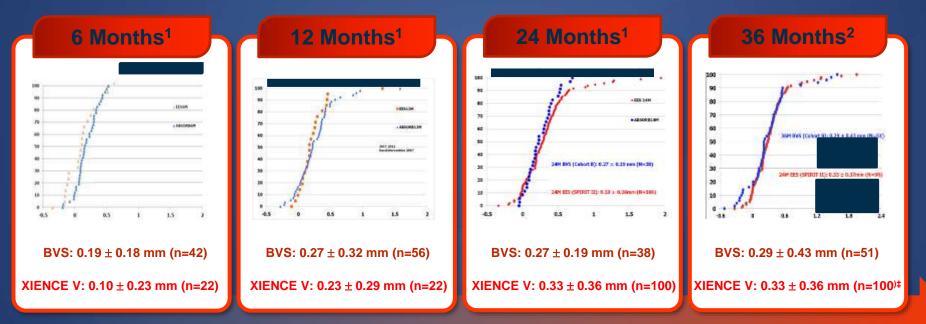

Non Higrarghiag	30 Days	6 Months	12 Months	2 Years	3 Years	4 Years
Non-Hierarchical	N = 45	N = 45	N = 45	N = 44*	N = 44*	N = 44*
Cardiac Death %	0	0	0	0	0	0
Myocardial Infarction % (n)	2.2 (1)	2.2 (1)	2.2 (1)	2.3 (1)	2.3 (1)	2.3 (1)
Q-wave MI	0	0	0	0	0	0
Non Q-wave MI	2.2 (1)	2.2 (1)	2.2 (1)	2.3 (1)	2.3 (1)	2.3 (1)
Ischemia driven TLR % (n)	0	2.2 (1)	4.4 (2)	4.5 (2)	4.5 (2)	4.5 (2)
CABG	0	0	0	0	0	0
PCI	0	2.2 (1)	4.4 (2)	4.5 (2)	4.5 (2)	4.5 (2)
Hierarchical MACE % (n)	2.2 (1)	4.4 (2)	6.7 (3)	6.8 (3)	6.8 (3)	6.8 (3)
Hierarchical TVF % (n)	2.2 (1)	4.4 (2)	6.7 (3)	6.8 (3)	9.1 (4)**	9.1 (4)**

No new MACE between 1-year and 4-years No scaffold thrombosis by ARC or Protocol

ABSORE Cohort B -Year Follow Up – B. Chevalier

KM Estimate of MACE Rate in Patients Treated with Absorb vs. Patients Treated with a Single 3.0x 18 mm Metallic XIENCE V

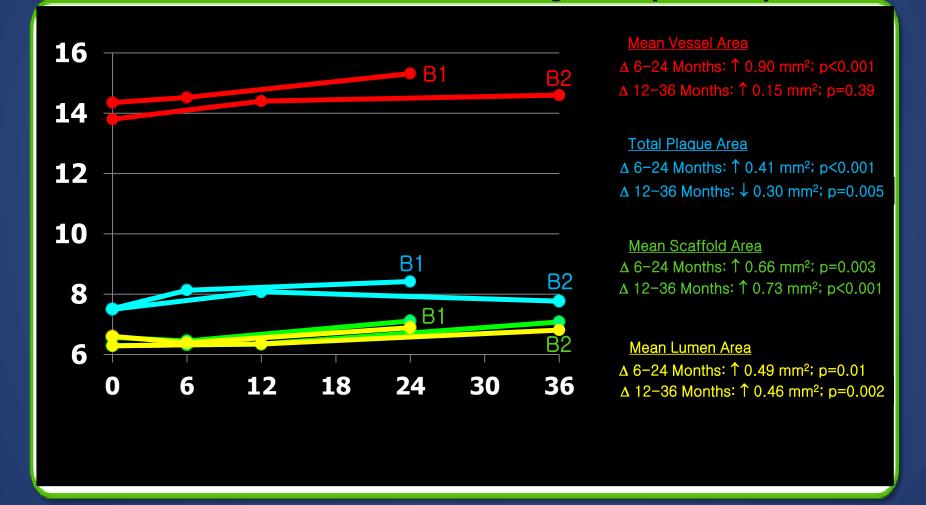
Absorb Demonstrates Similar Safety to XIENCE



ABSORB Cohort B

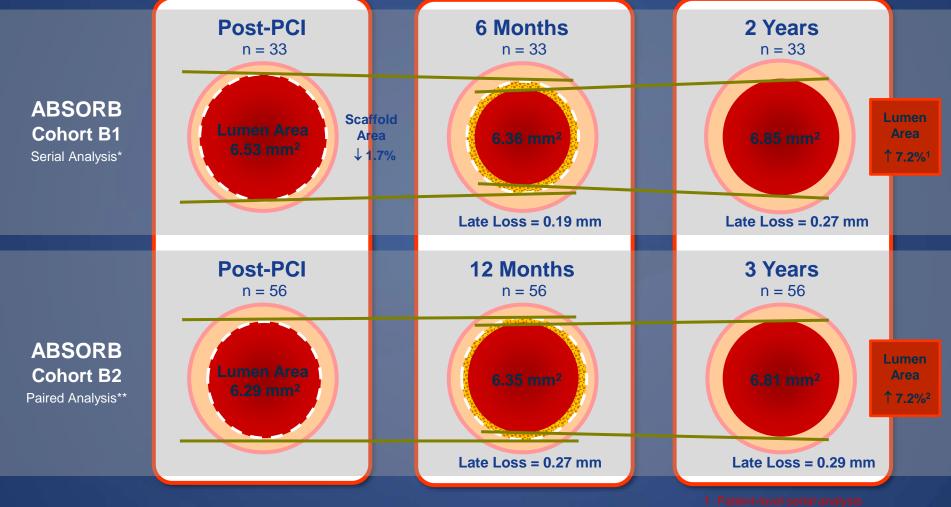
6, 12, 24 and 36-Month QCA – Intent to Treat (Groups 1 & 2)

The Evolution of Cumulative Frequency Distribution Curves for Late Loss Over Time: Absorb BVS and XIENCE V (Non-Matched Population)


Angiographic late loss similar to XIENCE V and remains relatively unchanged between 12 and 36 months*

1. Serruys, PW., 5-year ABSORB Cohort A and 2-year Cohort B results: integrated insights; TCT 2011 2. Serruys, PW., First report of the ABSORB Cohort B 3-year clinical and multi-modality imaging results; ACC 2013.

ABSORB Cohort B Serial IVUS Analysis (N=45)



Serruys PW, ABSORB Cohort B 3Year Data, Rotterdam EuroPCR Focus on BVS 2013

ABSORB Cohort B Temporal Lumen Dimensional Changes

2. Calculated from overall mean values

*Serruys, PW., ABSORB Cohort B 2-year results; TCT 2011 **Serruys, PW., ABSORB Cohort B 3-year results; ACC 2013

ABSORB EXTEND

Non-Randomized, Single-Arm., Continued assess

~ 1,000 subjects Up to 100 global sites (non-US)								
Clinical Follow-Up								
Clinical Follow-up	(months)	6	12	18	24	36		
MSCT follow up (n=100)								
OCT follow up (n=5	0)							
Study Objective	FPI: Jan 1	1, 2011						
Endpoints	Typical P	Typical PCI clinical endpoints						
Treatment	Up to 2 <i>de novo</i> lesions in different epicardial vessels Planned overlapping allowed in lesions >22 and ≤ 28 mm							
Device Sizes	Scaffold diameters: 2.5, 3.0, 3.5 mm Scaffold lengths: 12*, 18, 28 mmContinued Access trial							

Pooled ABSORB Cohort B and EXTEND 1-Year, Propensity Score Adjusted Analysis vs. SPIRIT I/ II/III – B. Chevalier

Propensity Adjusted Clinical Outcomes At 1 Year

Non-Hierarchical	Absorb BVS (N = 558)	XIENCE V (N = 672)	P value
Cardiac Death %	0.3	0.6	0.35
Myocardial Infarction %	3.9	2.1	0.06
Ischemia Driven TLR %	1.6	3.2	0.08
Hierarchical MACE %	5.2	5.5	0.81
Hierarchical TVF %	5.5	8.6	0.04
Hierarchical TLF %	5.2	5.0	0.91
Scaffold Thrombosis (ARC Def/Prob) %	0.5	0.5	0.93

Information contained herein for presentation ounside the U.S. only. Absorb is authorized for sale in CEMark and certain independently regulated countries outside the United States. Please check the regulatory status of the device in your geographical location before distribution. AP2939135-OUS Rev. A 10113

Absorb BVS Cohort: Pooled from ABSORB EXTEND and ABSORB Cohort B trials XIENCE V Cohort: Pooled from XIENCE V arms of SPIRIT FIRST, II, and III trials

TCTAP 2023

ABSORB EXTERD Clinical Results – Intent to Treat; Interim Snapshot

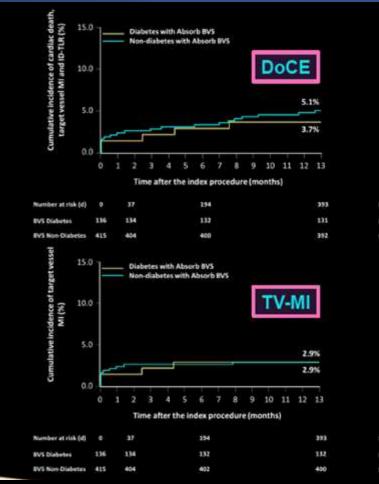
Non-Hierarchical % (n)	12 Months* (N = 250)	24 Months* (N = 250)
Cardiac Death % (n)	0.4	0.4
Myocardial Infarction % (n)**	2.8	4.0
Q-wave MI	1.2	1.2
Non Q-wave MI	1.6	2.8
Ischemia driven TLR % (n)	2.0	4.0
CABG	0.0	0.4
PCI	2.0	4.0
Hierarchical MACE % (n)	4.4	7.3
Hierarchical TVF %	4.8	8.1
Hierarchical TLF %	4.4	6.9
Scaffold Thrombosis (ARC Def/Prob) % (n)	0.8	0.8

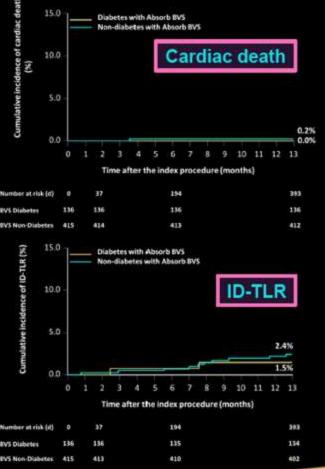
28th ТСТАР 2023

2-Year Propensity Scored Analysis ABSORB EXTEND vs. SPIRIT I/II/III - R. Whitbourn Absorb has comparable safety to XIENCE

ABSORB EXTEND Propensity Score Matched Clinical Outcomes: 2 Years

(באורבווט, איש וויטן	(SP123, N = 293)	P Value
0.0	1.4	0.30
4.5	4.4	1.00
3.4	3.8	1.00
6.7	8.9	0.49
7.3	12.3	0.09
6.2	8.2	0.47
0.6	1.4	0.65
	4.5 3.4 6.7 7.3 6.2	4.5 4.4 3.4 3.8 6.7 8.9 7.3 12.3 6.2 8.2





Dr. Whitbourn, TCT 2013

Pooled Analysis From ABSORB Cohort B and EXTEND 1-Year, Clinical Ou toomes of Diabetic Patients vs. SPIRIT I/II/III/IV at 1-Year– T. Muramatsu Absorb Demonstrates Similar Safety to XIENCE

Absorb Patients with Diabetes vs. Absorb Patients without Diabetes

Dr. Muramatsu, TCT 2013

ABSORB EXTEND / XIENCE V Propensity Score Matched Aalysis

BEFORE Propensity Matched 812 ABSORB EXTEND **6074 XIENCE SPIRIT II SPRIIT III SPIRIT IV* XIENCE V**

Case-controlled 1:1 match ratio AFTER Propensity Matched 812 Absorb 812 XIENCE

ABSORB EXTEND / XIENCE V Propensity Score Matched 1 Year Clinical Outcomes

	AbsorbXIENCE V(EXTEND, N = 812)(N = 812)		P Value
NON-HIERARCHICAL COMPONENTS			
Cardiac Death %	0.7	0.6	0.80
Myocardial Infarction %	3.3	1.5	0.02
Ischemia Driven TLR %	2.3	3.0	0.38
MACE %	5.0	4.8	0.83
TVF %	5.5	6.2	0.57
TLF %	5.0	4.7	0.74
Scaffold Thrombosis (ARC Def/Prob) %	1.0	0.3	0.11

28th TCTAP 2023

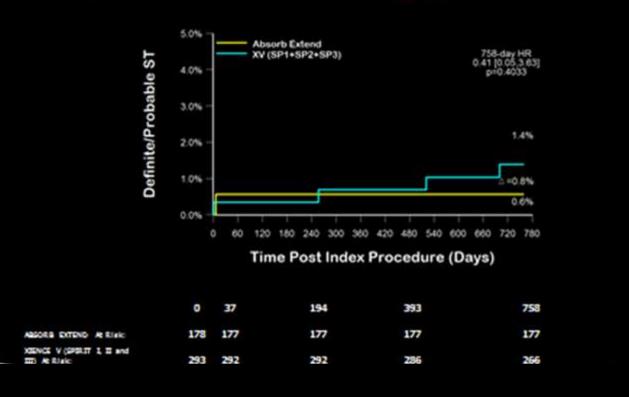
A. Abizaid – EuroPCR 2015

Propensity Score Matched Analysis of Site Diagnosed Angina Significant Difference in SDA at 1-Year

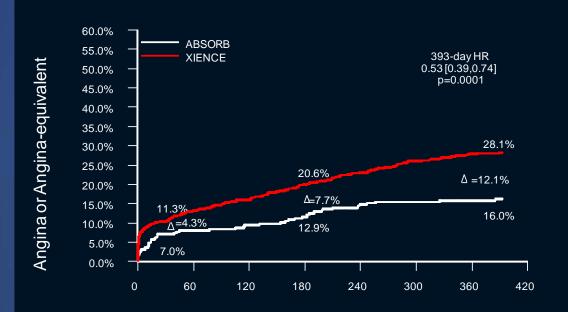
Unadjusted

Unadjusted	Absorb (EXTEND)	XIENCE V (SPIRIT IV)	Difference [CI]
1-Year	15.9% (60/378)	27.1% (542/2000)	11.2% [7.1%, 15.4%]

Propensity Score Matched


PS Matched	Absorb (EXTEND)	XIENCE V (SPIRIT IV)	Difference [CI]
1-Year	16.0% (46/287)	27.9% (168/602)	11.9% [6.3%, 17.4%]

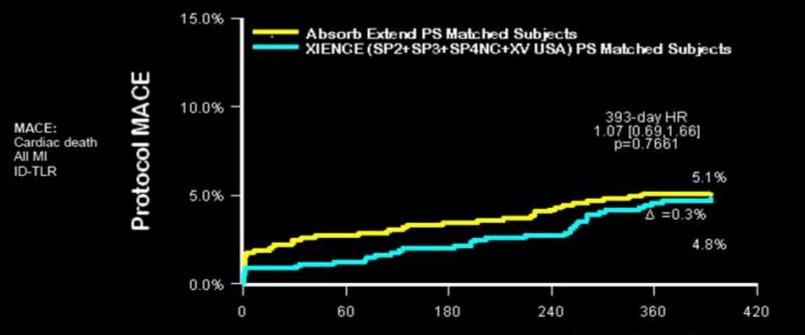
Propensity Score Analysis ABSORB EXTEND vs. SPIRIT I/II/III Definite/Probable ST Through 24-Months – R. Whitbourn Absorb has comparable safety to XIENCE


Propensity Score Matched Analysis: ABSORB EXTEND/SPIRIT ST (def/prob) Through 24 Months

TCTAP 2023

Absorb Propensity Score-Matched Angina Through 1-Year ABSORB EXTEND vs. SPIRIT IV

Time Post Index Procedure (Days)


Time post-Index Procedure (days)	0	37	194	393
Absorb Subjects At Risk:	287	267	250	240
# Events	5	20	37	46
XIENCE Subjects At Risk:	602	535	478	429
# Events	26	68	124	169

Dr. Stone, TCT 2013

ABSORB EXTEND / XIENCE V Propensity Matched 1 Year Clinical Outcomes

Time Post Index Procedure (Days)

	0	37	194	393
ABSORB EXTEND at Risk	812	790	783	768
XIENCE V (SP2+SP3+SP4NC+XV USA)) at Risk	812	798	772	709

ABSORB II RCT

501 subjects

(Randomized 2:1 Absorb versus XIENCE PRIME) Up to 40 European sites

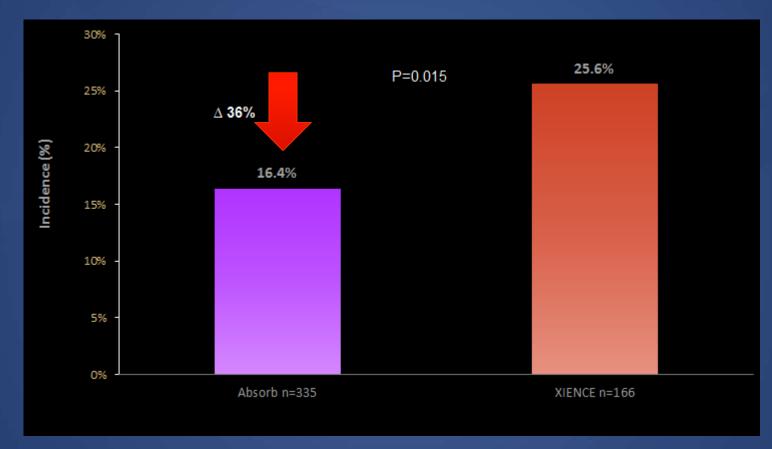
Clinical Follow-Up				1 C
	30 days	6 months 12 months	24 months	36 months
QOL follow-up Angio, OCT, IVUS follo MSCT follow-up (Abso				

Study Objective	Randomized against XIENCE PRIME control. FPI 28-Nov-2011
	 Vasomotion assessed by change in Mean Lumen Diameter between pre- and post-nitrate at 2 years (superiority)
Co-primary Endpoints	 Minimum Lumen Diameter (MLD) at 2 years post nitrate minus MLD post procedure post nitrate (non-inferiority, reflex to superiority)
Treatment	Up to 2 <i>de novo</i> lesions in different epicardial vessels Planned overlapping allowed in lesions ≤ 48 mm

28th TCTAP 2023

One Year Clinical Results

	Absorb	XIENCE	
	(N=335 patients)	(N=166 patients)	P-value
DoCE (Device-Oriented Composite Endpoint)	4.8	3.0	0.35
Cardiac Death (%)	0	0	1.00
Target Vessel MI (%)	4.2	1.2	0.07
Clinically Indicated TLR (%)	1.2	1.8	0.69
All TLR (%)	1.2	1.8	0.69
Definite Scaffold/Stent Thrombosis (%)	0.6	0.0	1.00
PoCE (Patient-Oriented Composite Endpoint)	7.3	9.1	0.47
All Death (%)	0	0.6	0.33
All MI (%)	4.5	1.2	0.06
All NQMI (%)	3.9	1.2	0.16
All QMI (%)	0.6	0	1.00
All Revascularizations (%)	3.6	7.3	0.08



P.W. Serruys, TCT 2014

One Year Angina Outcome

P.W. Serruys, TCT 2014

	2 years		
	Absorb BVS N=335	XIENCE N=166	p value
Death* (%)	1.2	0.6	0.67
Cardiac	0.6	0.0	0.55
Non cardiovascular	0.6	0.6	1.00
Myocardial Infarction (%)	5.8	2.4	0.10
Q-wave	1.5	0.6	0.67
Non Q-wave	4.3	1.8	0.16
Definite/Probable ST* (%)	1.5	0.0	0.17
Acute/sub-acute (0-30 days)	0.6	0.0	1.00
Late (31-365 days)	0.3	0.0	1.00
Very late (365 – 758 days)	0.6	0.0	0.55
TLR (%)	2.7	1.8	0.76
NTL-TVR (%)	1.5	2.4	0.49
NTVR (%)	2.7	5.5	0.13
All revascularization	5.8	9.1	0.17

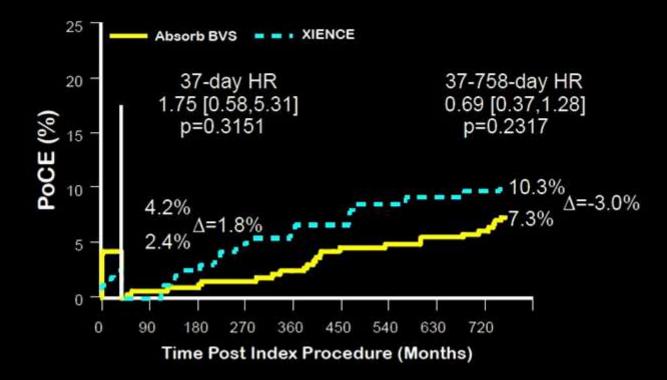
	Absorb BVS	XIENCE	<i>p</i> value
	N=335	N=166	
PoCE (%)	11.6	12.8	0.70
MACE (%)	7.6	4.3	0.16
DoCE, TLF (%)	7.0	3.0	0.07
TVF (%)	8.5	6.7	0.48

PoCE (Patient oriented Composite Endpoint):

All death, all myocardial infarction, and all revascularisation

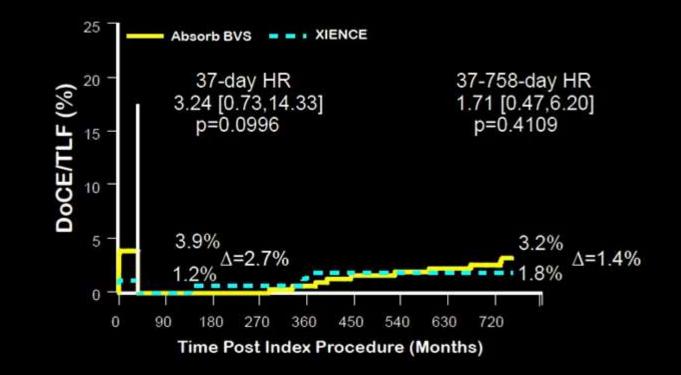
MACE (Major Adverse Cardiac Events):

Cardiac death, all myocardial infarction, and clinically indicated target-lesion revascularisation (TLR) DoCE (Device oriented Composite Endpoint)/ TLF (Target Lesion Failure):


Cardiac death, target-vessel myocardial infarction, and clinically indicated target-lesion revascularisation (TLR) TVF (Target Vessel Failure):

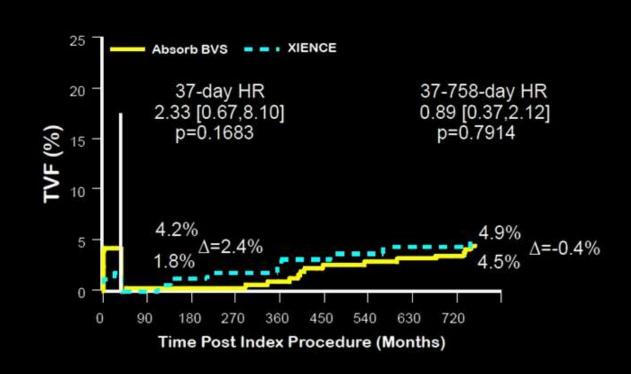
Cardiac death, all myocardial infarction, clinically indicated target-vessel revascularisation (TVR)

Patient oriented Composite Endpoint (PoCE)



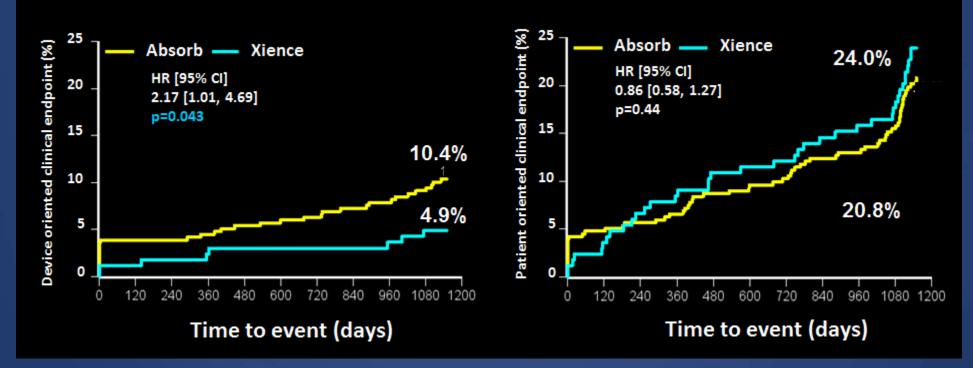
PoCE: All death, all myocardial infarction, and all revascularisation

ABSORB 2-YEARS Device oriented Composite Endpoint (DOCE)/ Target Lesion Failure (TLF)



DoCE/TLF : Cardiac death, target-vessel myocardial infarction, and clinically indicated target-lesion revascularisation (TLR)

Target Vessel Failure (TVF)


TVF : Cardiac death, all myocardial infarction, clinically indicated target-vessel revascularisation

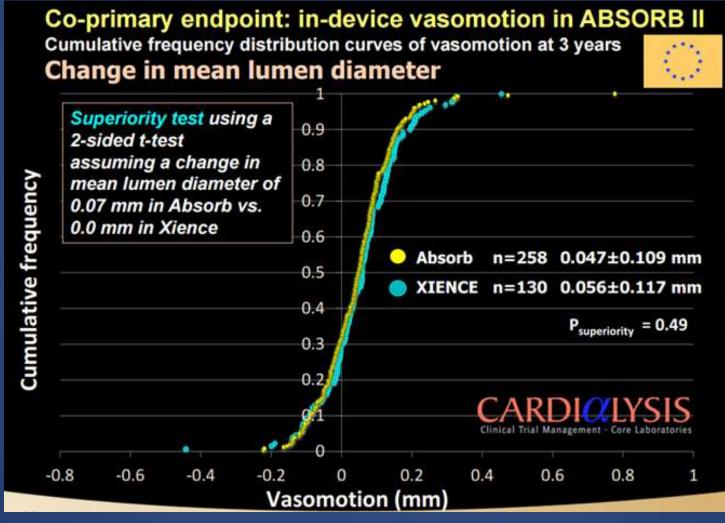
Device-Oriented Composite Endpoints (Cardiac Death, TV-MI, CI-TLR)

Patient-Oriented Composite Endpoints (Any Death, Any-MI, Any Revascularization)

Scaffold or Stent Thrombosis

	Absorb 335 patients	Xience 166 patients	p value
Definite	2.5% (8)	0.0% (0)	0.06
Acute (0–1 day)	0.3% (1)	0.0% (0)	1.0
Sub-acute (2–30 days)	0.3% (1)	0.0% (0)	1.0
Late (31–365 days)	0.0% (0)	0.0% (0)	1.0
Very late (>365 days)	1.8% (6)	0.0% (0)	0.19
Definite or probable	2.8% (9/320)	0.0% (0/159)	0.03
Acute (0–1 day)	0.3% (1)	0.0% (0)	1.0
Sub-acute (2–30 days)	0.3% (1)	0.0% (0)	1.0
Late (31–365 days)	0.3% (1)	0.0% (0)	1.0
Very late (>365 days)	1.8% (6)	0.0% (0)	0.19

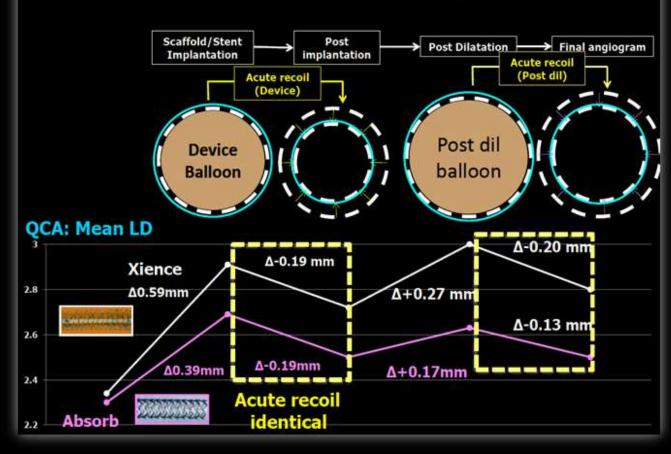
Lancet 2016; 388: 2479–911



ABSORB II 3-years Secondary Clinical Endpoints

	Absorb 325 patients	Xience 161 patients	Relative Risk	p value
Device-oriented composite endpoint [DOCE]	10.5%	5.0%	2.11 [1.00, 4.44]	0.04
Cardiac death	0.9%	1.9%	0.50 [0.10, 2.43]	0.40
Target vessel MI	7.1% (23)	1.2% (2)	5.70 [1.36, 23.87]	0.0061
Periprocedural MI (WHO)	3.9%(13)	1.2% (2)	3.22 [0.74, 14.11]	0.16
Spontaneous MI (WHO extended)	3.1% (10)	0% (0)	NC [NC]	0.06
Clinically indicated TLR	6.2%(20)	1.9% (3)	3.30 [1.00, 10.95]	0.036
Patient-oriented composite endpoint [POCE]	20.9%	24.2%	0.86 [0.61, 1.22]	0.40
All-cause death	2.5%	3.7%	0.66 [0.23, 1.87]	0.57
Any MI	8.3%	3.1%	2.68 [1.05, 6.82]	0.03
Any revascularization	15.1%	20.5%	0.74 [0.49, 1.10]	0.13

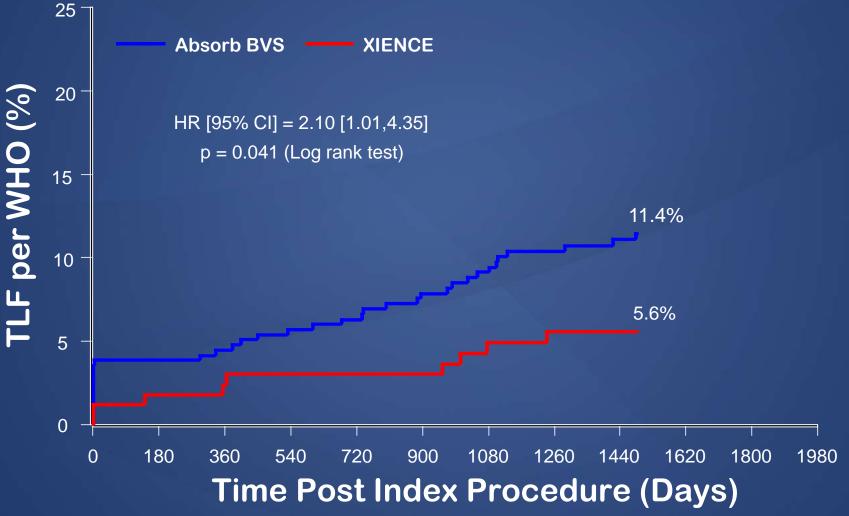
In-device Vasomotion


TCTAP 2023

PW Serruy, TCT 2016

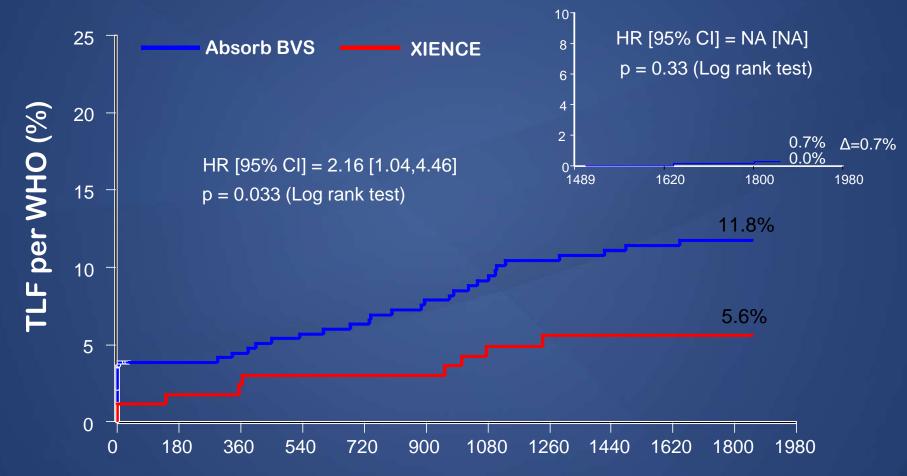
ABSORB II 3-years Radial Strength

Recoil and acute gain in Absorb II


Acute gain was smaller in Absorb than Xience on QCA and IVUS.

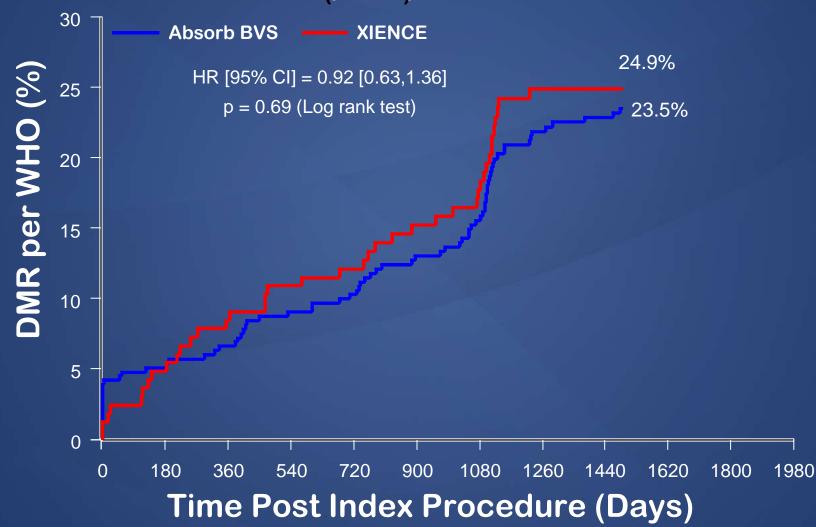
Serruys, PW. JIM 2016

Device-oriented Composite Endpoint(DoCE) at 4 Years Target Lesion Failure (TLF)



CI=confidence interval, DoCE=device-oriented composite endpoint, HR=hazard ratio, TLF=target lesion failure, WHO=World Health Organization

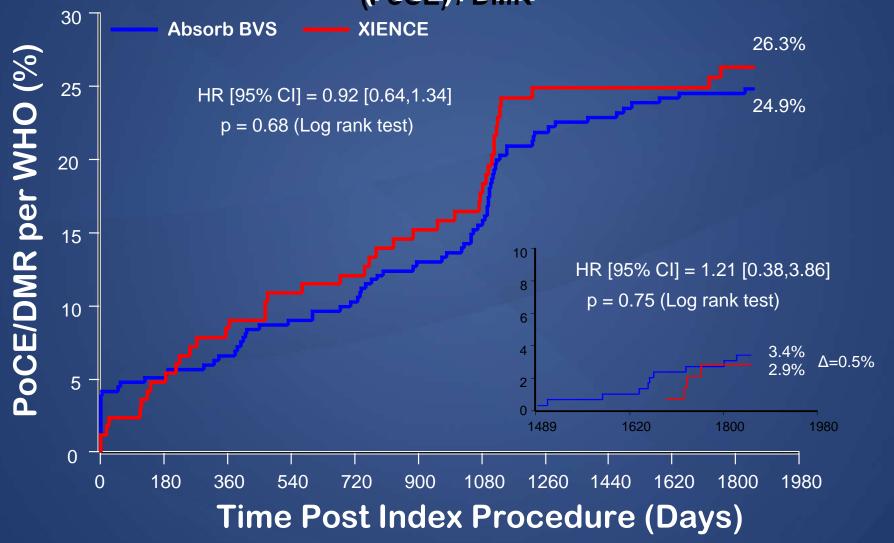
Device-oriented Composite Endpoint (DoCE) at 5 Years Target Lesion Failure (TLF)


Time Post Index Procedure (Days)

DoCE/TLF : Cardiac death, target-vessel myocardial infarction, and clinically indicated target-lesion revascularisation (TLR)

CI=confidence interval, DoCE=device-oriented composite endpoint, HR=hazard ratio, TLF=target lesion failure, WHO=world health organization

ABSORE || 4-years Patient-oriented Composite Endpoint at 4 Years (PoCE) / DMR



28th TCTAP 2023

CI=confidence interval, HR=hazard ratio, PoCE=DMR: All <u>D</u>eath, all <u>Myocardial infarction</u>, and all <u>R</u>evascularization, WHO=World Health Organization

Patient-oriented Composite Endpoint at 5 Years (PoCE) / DMR

ABSORB 11 5-YEARS Clinical Outcomes Composite Endpoints at 5 Years

	Absorb BVS N=335	XIENCE N=166	<i>p</i> value
PoCE (%)	26.3	28.6	0.6132
MACE (%)	13.5	8.8	0.1545
DoCE, TLF (%)	12.5	6.1	0.0377
TVF (%)	15.5	15.0	0.8912

PoCE (Patient-oriented Composite Endpoint):

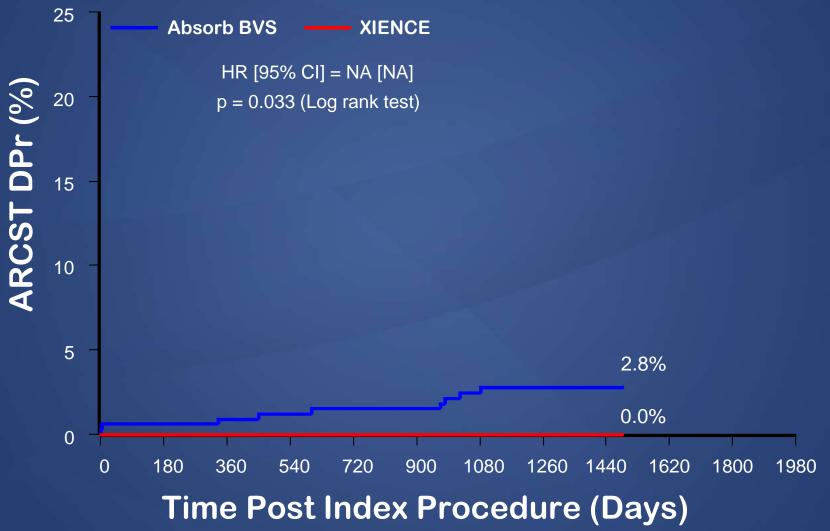
All death, all myocardial infarction, and all revascularisation

MACE (Major Adverse Cardiac Events):

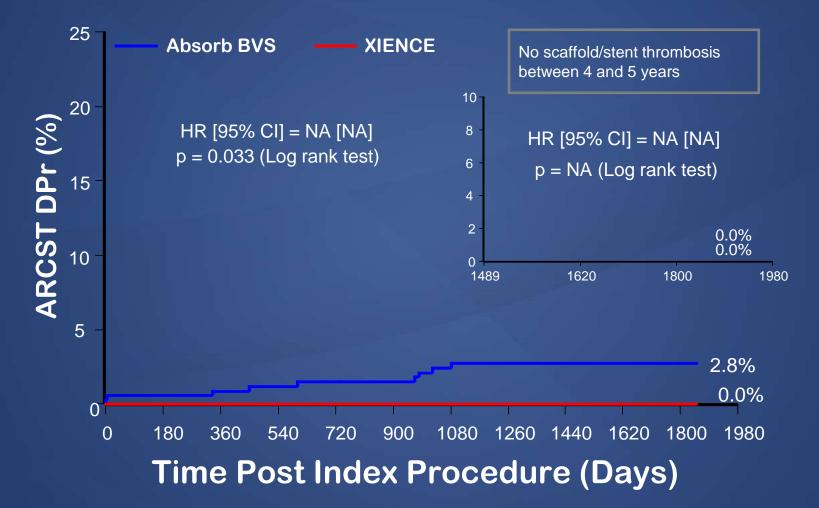
Cardiac death, all myocardial infarction, and clinically indicated target-lesion revascularisation (TLR) DoCE (Device-oriented Composite Endpoint)/ TLF (Target Lesion Failure):

Cardiac death, target-vessel myocardial infarction, and clinically indicated target-lesion

revascularisation (TLR)

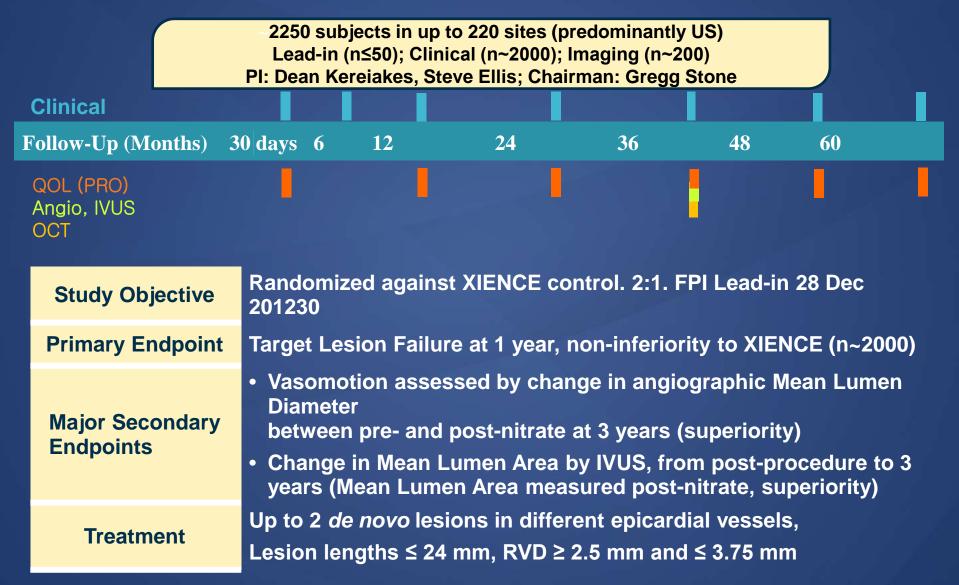

TVF (Target Vessel Failure):

Cardiac death, all myocardial infarction, clinically indicated target-vessel revascularisation (TVR)


Definite/Probable Scaffold/Stent Thrombosis* at 4 Years

ARCST=academic research consortium scaffold/stent thrombosis, CI=confidence interval, DPr=definite/probable, HR=hazard ratio, NA=not applicable

Definite/Probable Scaffold/Stent Thrombosis* at 5 Years



ARCST=academic research consortium scaffold/stent thrombosis, CI=confidence interval, DPr=definite/probable, HR=hazard ratio, NA=not applicable

ABSORB III RCT

TCTAP 2023

ABSORB III Baseline Characteristics

Characteristic	Absorb	Xience	
Characteristic	(N=1322)	(N=686)	p-value
Age (mean)	63.5 ±10.6	63.6±10.3	0.75
Male	70.7%	70.1%	0.80
Race (Caucasian)	87.1%	88.3%	0.44
Current tobacco use	21.3%	20.7%	0.77
Hypertension	84.9%	85.0%	0.95
Dyslipidemia	86.2%	86.3%	0.97
Diabetes	31.5%	32.7%	0.60
Insulin-treated	10.5%	11.2%	0.60
Prior MI	21.5%	22.0%	0.79
Prior coronary intervention	38.7%	38.0%	0.75
Stable angina	57.3%	60.8%	0.13
Unstable angina	26.9 %	24.5%	0.25
Silent ischemia	10.0%	10.2%	0.88
Single vessel disease	69.5%	67.2%	0.29

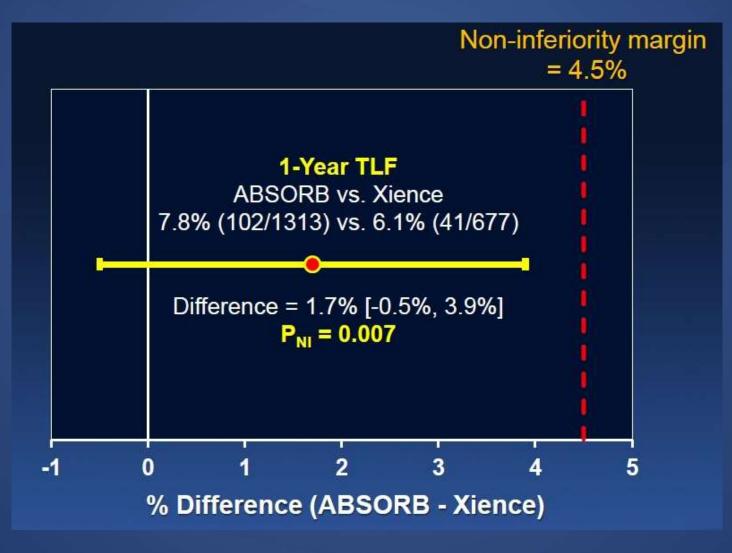
TCTAP 2023

ABSORB III Angiographic Characteristics

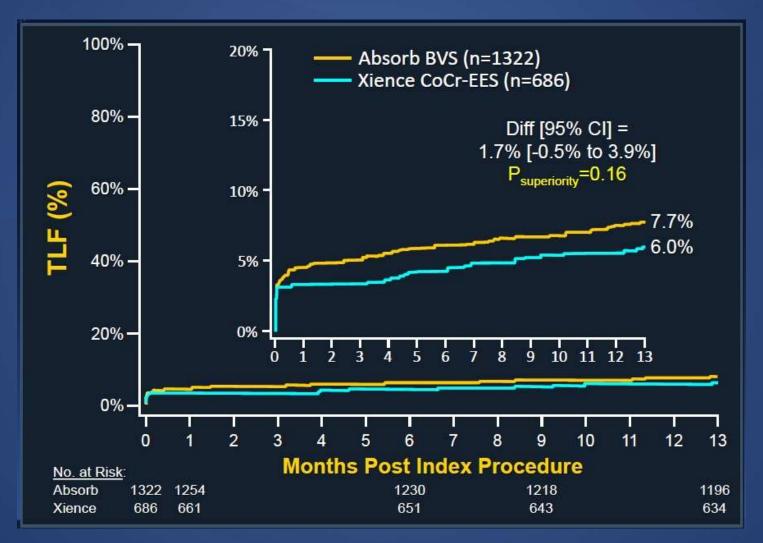
	Absorb (N=1322)	Xience (N=686)	
Characteristic	(L=1385)	(L=713)	p-value
ACC/AHA lesion class B2/C	68.7%	72.5%	0.08
# of target lesions treated	1.0 ± 0.2	1.0 ± 0.2	0.38
One	95.1%	96.1%	0.32
Two	4.8%	3.9%	0.36
Target lesion			
LAD	44.5%	42.2%	0.31
RCA	29.2%	27.2%	0.35
Circumflex	26.2%	30.6%	0.03
Lesion length, mm	12.60 ± 5.41	13.12 ± 5.82	0.05
RVD, mm	2.67 ± 0.45	2.65 ± 0.46	0.36
RVD <2.25 mm	18%	19%	0.39
MLD, mm	0.92 ± 0.37	0.90 ± 0.34	0.11
%DS	65.3 ± 12.5	65.9 ± 11.7	0.24

ABSORE III Procedural Characteristics

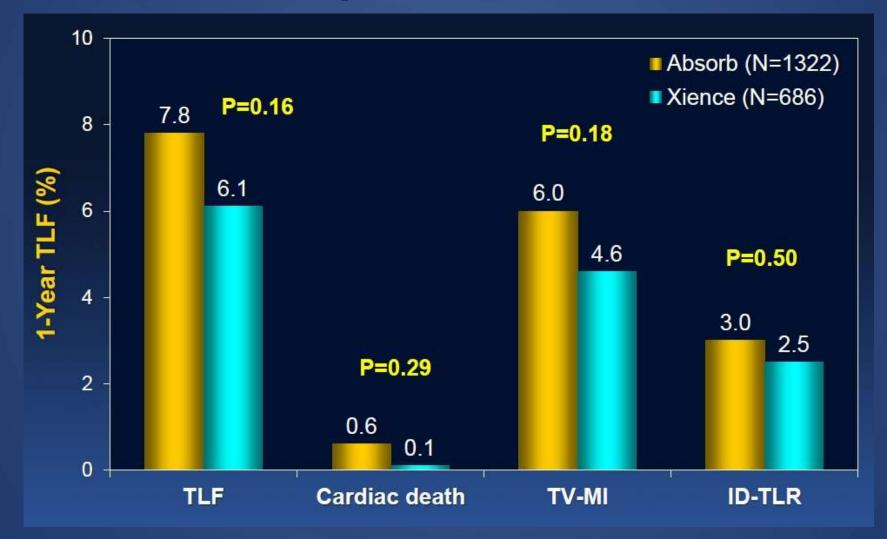
	Absorb (N=1322)	Xience (N=686)	
Characteristic	(L=1385)	(L=713)	p-value
Per Subject			
Bivalirudin use	60.7%	58.7%	0.39
GP IIb/IIIa inhibitor use	10.1%	12.4%	0.11
Only unassigned devices implanted	4.4%	0.6%	<0.001
Unplanned overlapping devices	6.2%	8.5%	0.06
Post-dilatation performed	65.5%	51.2%	<0.001
Intravascular imaging guidance	11.2%	10.8%	0.81
Procedure duration (min)	42.2 ± 23.1	38.3 ± 20.9	<0.001
Per Lesion			
Total study device length (mm)	20.5 ± 7.2	20.7 ± 9.0	0.56
Max device/balloon diameter (mm)	3.18 ± 0.43	3.12 ± 0.45	0.007
Max device/balloon to vessel diameter ratio	1.21 ± 0.15	1.19 ± 0.14	0.05
Maximum device/balloon pressure (atm.)	15.4 ± 3.0	15.4 ± 3.2	0.83



Measurement	Absorb (N=1322) (L=1385)	Xience (N=686) (L=713)	p-value
RVD	2.70 ± 0.45	2.68 ± 0.47	0.33
In-Device			
MLD	2.37 ± 0.40	2.49 ± 0.40	<0.0001
Acute gain	1.45 ± 0.45	1.59 ± 0.44	<0.0001
%DS	11.6 ± 8.77	6.4 ± 8.91	<0.0001
In-Segment			
MLD	2.15 ± 0.41	2.14 ± 0.43	0.58
Acute gain	1.23 ± 0.46	1.24 ± 0.44	0.50
%DS	20.0 ± 7.94	19.8 ± 8.20	0.55


ABSORB III Primary Endpoint-TLF

28th TCTAP 2023

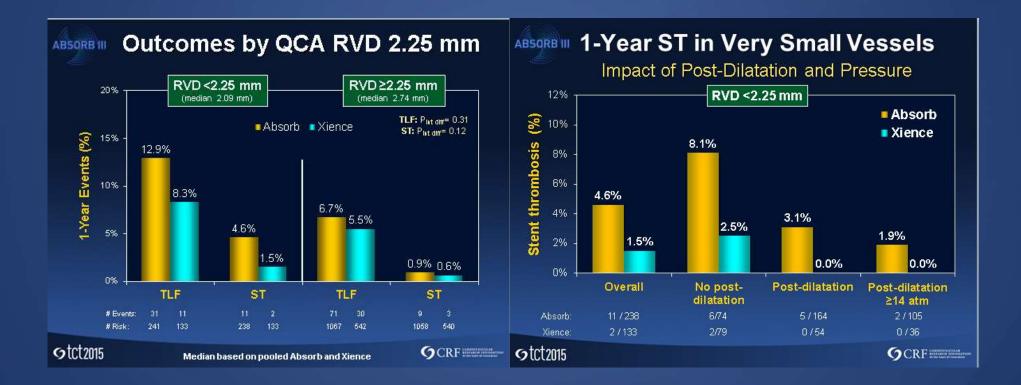

ABSORB III Primary Endpoint-TLF

Subgroup	Absorb (N=1322)	Xience (N=686)	RR (95% CI)	Relative Risk (95% CI)	p-value (interaction)	
Age ≥64 years	8.1%	5.9%		1.37 (0.84-2.23)	- Anna ann a shara	
Age <64 years	7.4%	6.2%	нфн	1.19 (0.72-1.97)	0.69	
Female	8.5%	7.4%	4	1.16 (0.64-2.08)		
Male	7.4%	5.5%	.	1.36 (0.88-2.10)	0.68	
Diabetes	10.7%	9.1%	+ > -	1.18 (0.71-1.95)		
No diabetes	6.3%	4.6%		1.38 (0.85-2.24)	0.68	
Unstable angina/recent MI	6.5%	6.6%	r∳-i	0.98 (0.50-1.90)	0.05	
Stable CAD	8.3%	5.8%	•	1.42 (0.94-2.15)	0.35	
Single TL/TV treated	7.7%	5.8%	i	1.32 (0.92-1.89)	0.50	
Dual TL/TV treated	9.4%	11.5%	ı—q́—ı	0.81 (0.22-3.01)	0.50	
Clopidogrel	8.0%	6.8%	ф•	1.17 (0.77-1.78)	0.43	
Prasugrel or ticagrelor	7.1%	4.3%	+ 0-1	1.63 (0.82-3.25)	0.43	
ACC/AHA class A or B1	6.8%	2.2%	└─ �─ 	3.05 (1.08-8.60)	0.07	
ACC/AHA class B2 or C	8.2%	7.5%	i pi	1.10 (0.75-1.61)	0.07	
Lesion length <11.75 mm	7.9%	4.8%	i.	1.64 (0.95-2.83)	0.00	
Lesion length ≥11.75 mm	7.7%	7.3%	ц.	1.06 (0.67-1.67)	0.23	
RVD <2.63 mm	9.8%	7.8%	• • ••	1.27 (0.82-1.94)	0.00	
RVD ≥2.63 mm	5.7%	4.3%		1.34 (0.73-2.44)	0.90	
		0.	1 1.0 1	n		
		Favors Abso		avors Xience		

ABSORE III Component of TLF

ABSORB []] Device Thrombosis

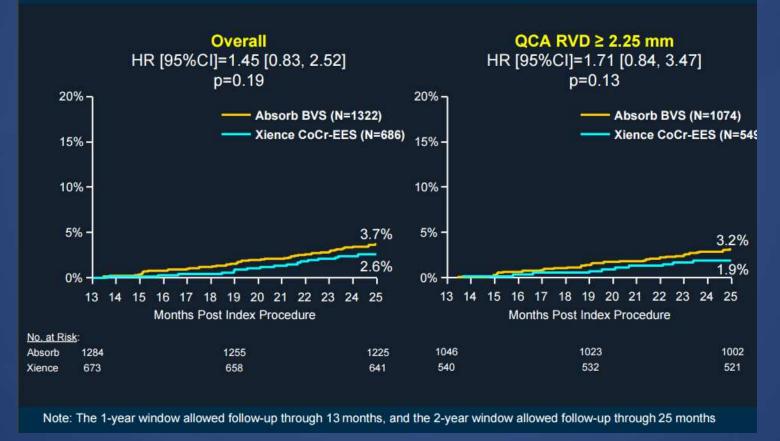
	Absorb (N=1322)	Xience (N=686)	p-value
Device Thrombosis (def/prob)	1.54%	0.74%	0.13
- Early (0 to 30 days)	1.06%	0.73%	0.46
- Late (> 30 to 1 year)	0.46%	0.00%	0.10
- Definite* (1 year)	1.38%	0.74%	0.21
- Probable (1 year)	0.15%	0.00%	0.55


ABSORB III Secondary Endpoints

	Absorb (N=1322)	Xience (N=686)	p-value
Angina	18.3%	18.4%	0.93
All Revascularization	9.1%	8.1%	0.50
ID-TVR	5.0%	3.7%	0.21

TCTAP 2023

ABSORB III, 1-year outcome

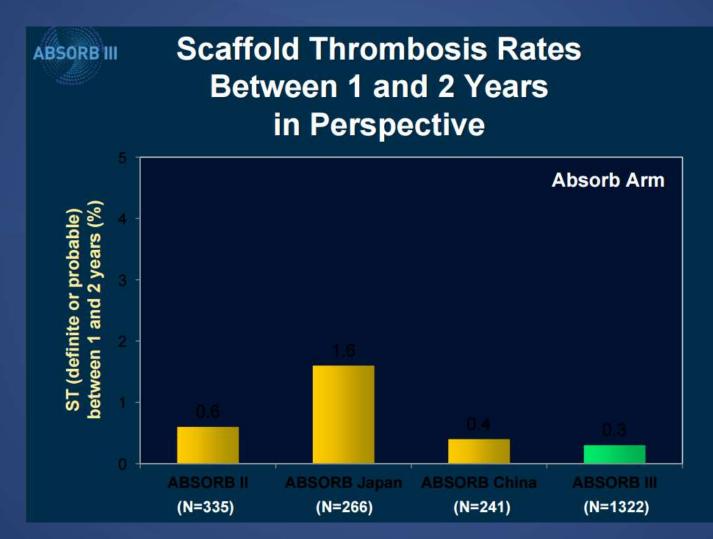


TCTAP 2023

TLF Between 1 and 2 Years (13 – 25 Months)

ABSORB III

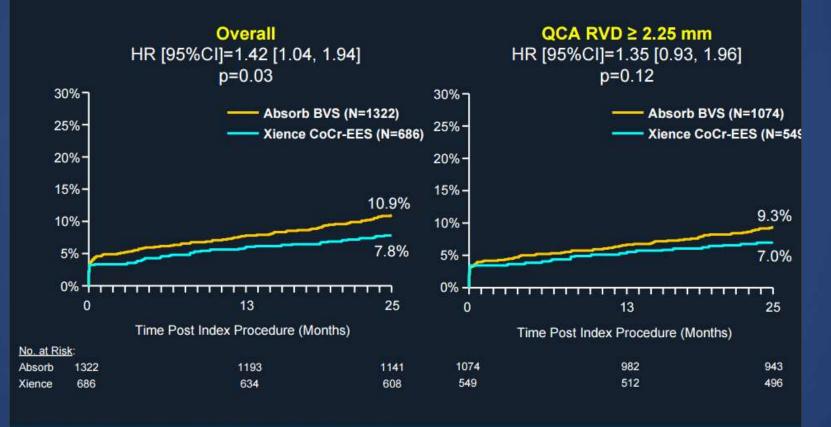
Clinical Endpoints from 1 to 2 Years (13 to 25 Months)


	Overall		QCA RVD ≥ 2.25mm	
	Absorb (N=1322)	XIENCE (N=686)	Absorb (N=1074)	XIENCE (N=549)
TLF	3.7% (47)	2.5% (17)	3.2% (33)	1.9% (10)
Cardiac Death	0.5% (6)	0.4% (3)	0.4% (4)	0.2% (1)
TV-MI	1.3% (17)	0.7% (5)	1.3% (14)	0.4% (2)
ID-TLR	2.6% (33)	1.8% (12)	2.2% (23)	1.5% (8)
ST (Def/Prob)	0.3% (4)	0.0% (0)	0.4% (4)	0.0% (0)

P-value >0.05 for all comparisons

ABSORB III

Note: The 1-year window allowed follow-up through 13 months, and the 2-year window allowed follow-up through 25 months



TLF by 2 Years (25 Months)

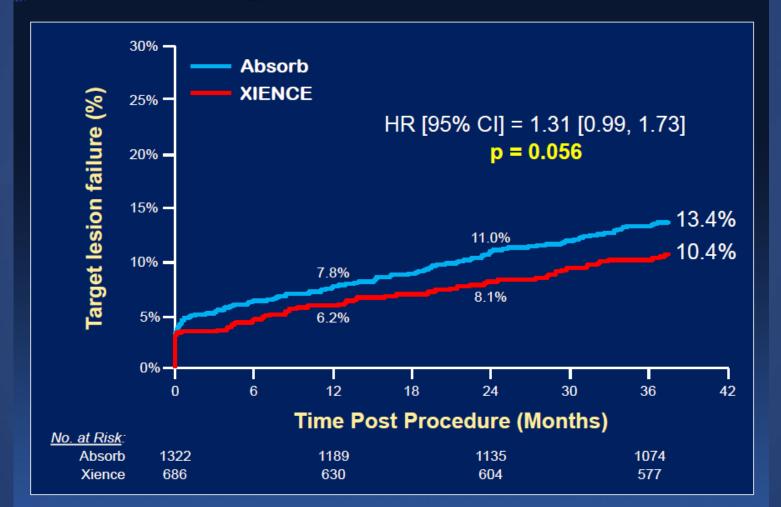
Note: The 2-year window allowed follow-up through 25 months

ABSORB III

Stephen G. Eelis ACC 2017

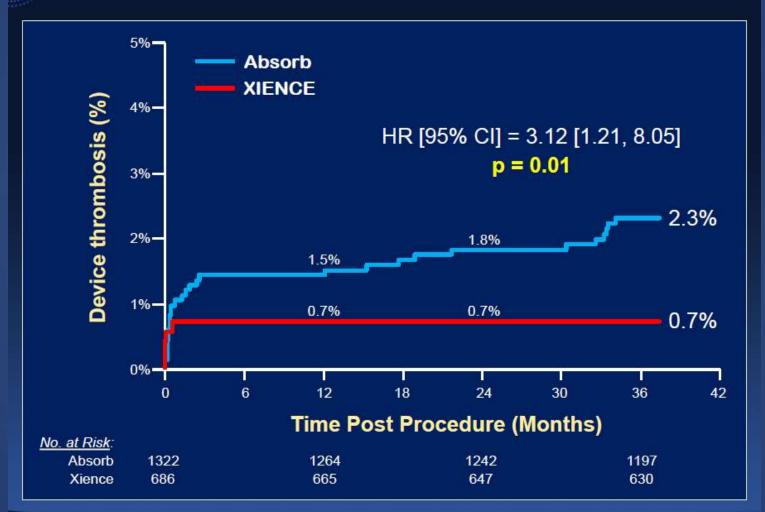
ABSORB III 2-years

ABSORBIN Clinical Endpoints by 2 Years (25 Months)


	Ove	rall	QCA RVD ≥ 2.25mm			
	Absorb (N=1322)	XIENCE (N=686)	Absorb (N=1074)	XIENCE (N=549)		
TLF	11.0% (143)*	7.9% (53) [*]	9.4% (99)	7.0% (38)		
Cardiac Death	1.1% (14)	0.6% (4)	0.9% (10)	0.4% (2)		
TV-MI	7.3% (95)**	4.9% (33) ^{**}	6.5% (68)	4.8% (26)		
ID-TLR	5.3% (69)	4.3% (29)	4.1% (43)	3.0% (16)		
ST (Def/Prob)	1.9% (24)	0.8% (5)	1.3% (13)	0.6% (3)		

* P-value=0.03. ** P-value=0.04. P-value >0.05 for all other comparisons Note: The 2-year window allowed follow-up through 25 months

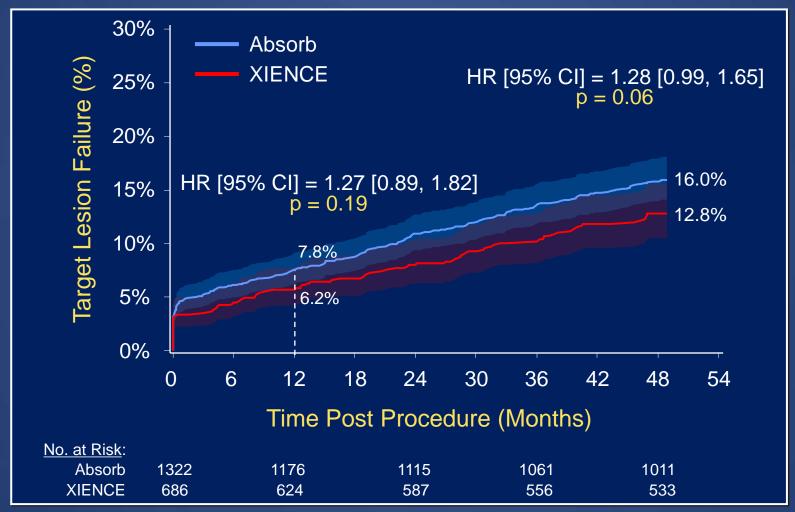
ABSORB III 3-years Target Lesion Failure



Stephen G. Eelis TCT 2017

ABSORB III 3-years

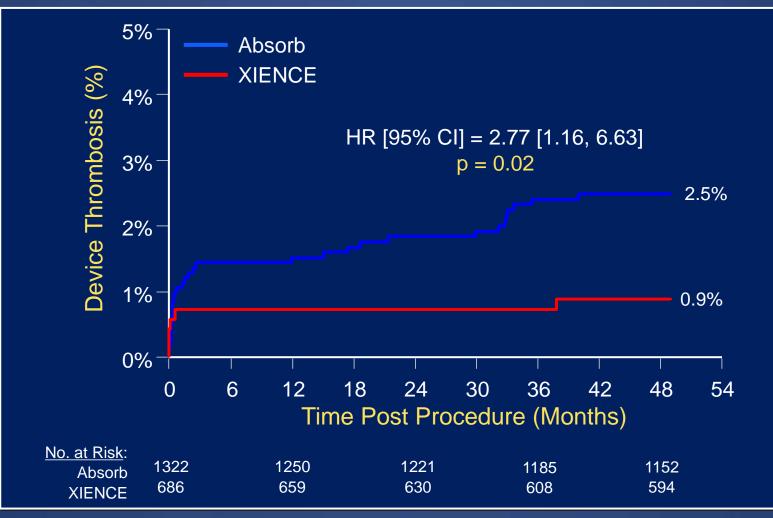
Device Thrombosis


ORB III

Stephen G. Eelis TCT 2017

ABSORB III 4-years

4-Year Target Lesion Failure



Note: 4-year window includes follow-up through 49 months.

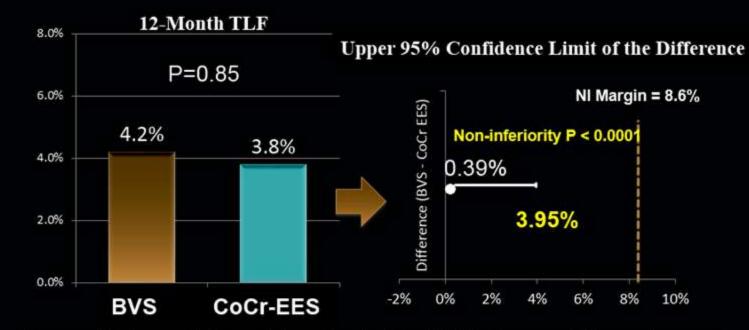
ABSORB III 4-years 4-Year Device Thrombosis

28th TCTAP 2023

Note: 4-year window includes follow-up through 49 months.

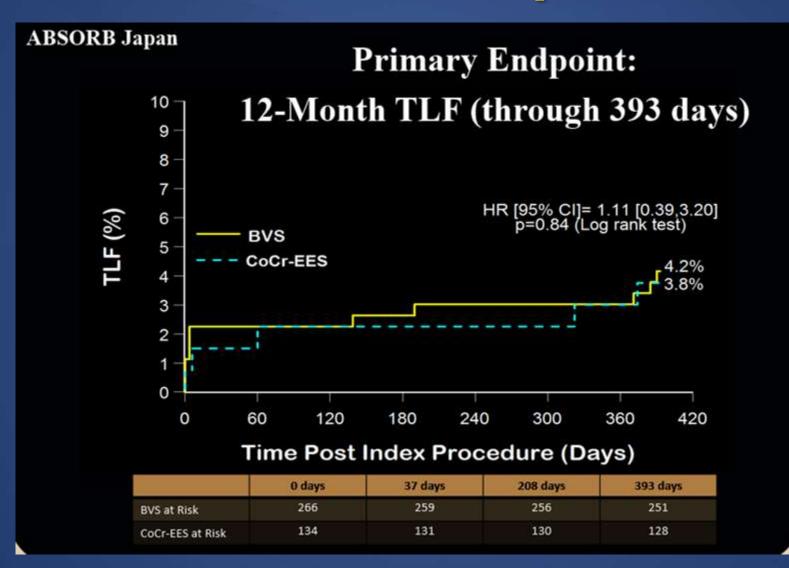
ABSORB JAPAN RCT JAPAN Approval Trial

~400 subjects (267 Absorb, 133 XIENCE) ~30 Japan Sites. Follow-up out to 5 years PI: Takahashi Kimura

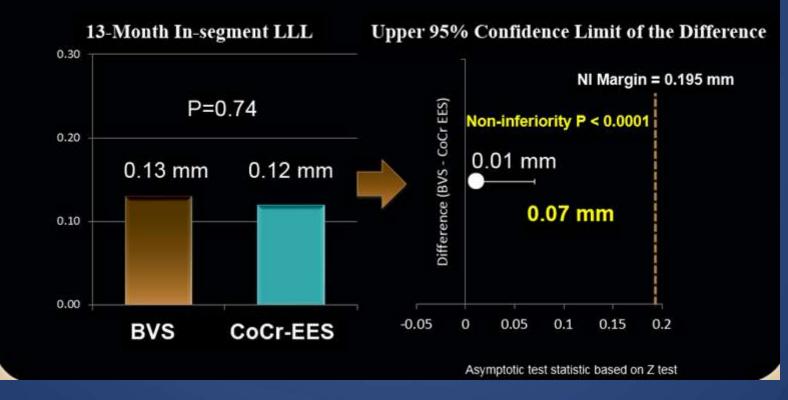

Clinical follow-up						
Follow-Up (Months) 30 days 6	12 13	24	36	48	60	
MSCT Angiography IVUS/OCT/Vasomotion ACh Study						

Study Objective	Randomized against XIENCE V 2:1
Primary Endpoint	Clinically indicated target lesion failure at 1-year (composite of cardiac death, target vessel MI or clinically indicated TLR)
Treatment	Up to two <i>de novo</i> lesions in different epicardial vessels. No planned overlap allowed

ABSORB Japan


Primary Endpoint: 12-Month TLF (through 393 days)

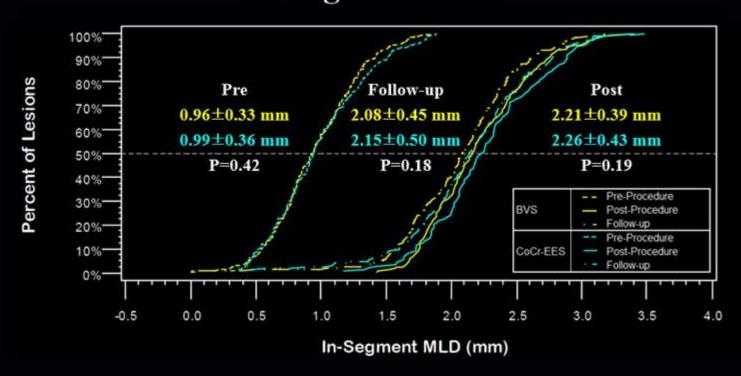
The one-sided upper 95% confidence limit for the 0.39% observed difference in event rates was 3.95%, suggesting that any absolute difference between the 2 devices is likely to be small.



Kimura, ESC 2015

ABSORB Japan

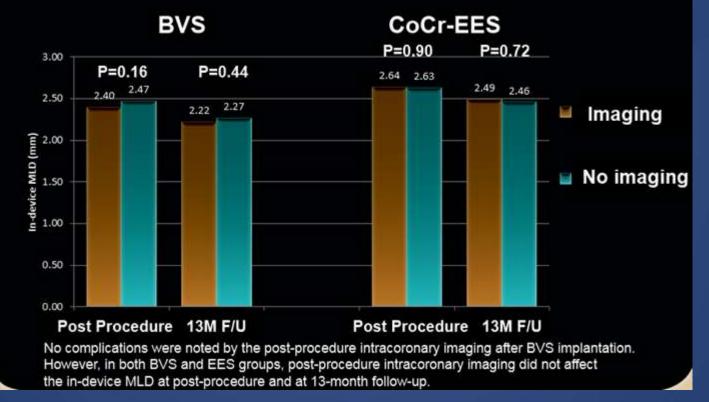
Major Secondary Angiographic Endpoint: 13-Month In-Segment LLL



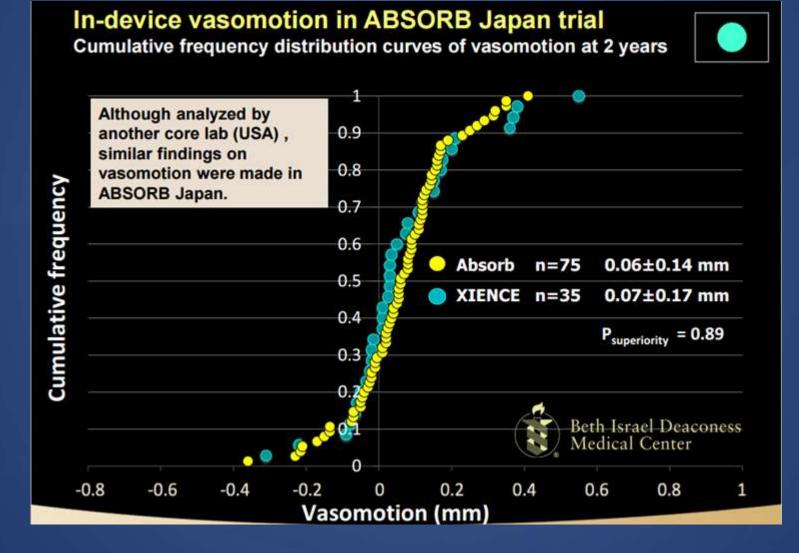
Kimura, ESC 2015

ABSORB Japan

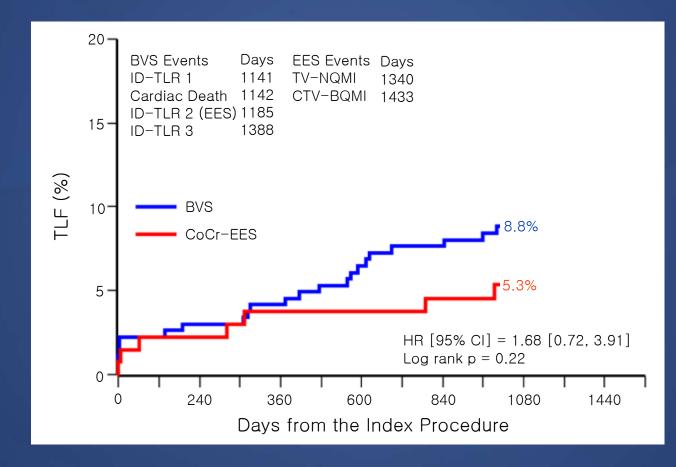
Cumulative Distribution Function Curves for In-segment MLD



ABSORB Japan

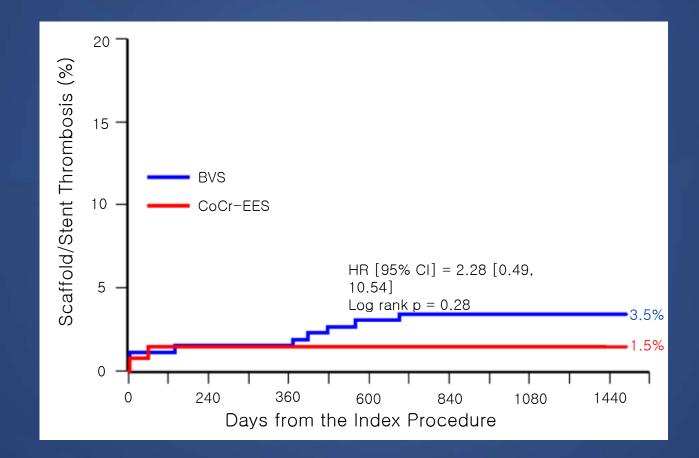

Impact of Post-procedure Intracoronary Imaging

CVRF



28th TCTAP 2023

Onuma, Sotomi, Serruys, Kimura et al. EuroIntervention 2016


ABSORB Japan Kaplan-Myer TLF to 4 Years

ABSORB Japan Kaplan-Myer Stent/Scaffold Thrombosis to 4 Years

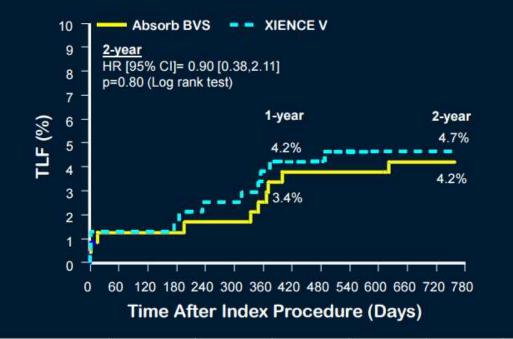
Clinical Outcomes at 4 Years

	BVS N=255	EES N=127	Р
Cumulative TLF	10.6% (27)	7.1% (9)	0.27
- Cardiac Death	0.8% (2)	0.0% (0)	1.00
- TV-MI	5.9% (15)	4.7% (6)	0.64
- ID-TLR	8.2% (21)	3.9% (5)	0.12
Cumulative ST	3.7% (9)	1.6% (2)	0.35
TLF 3-4 Years	2.1% (5)	1.6% (2)	1.00
- Cardiac Death*	0.3% (1)	0.0% (0)	1.00
- TV-MI*	0.4% (1)	1.6% (2)	0.27
- ID-TLR	1.7% (4)	0.0% (0)	0.30
- Primary ID-TLR**	1.2% (3)	0.0% (0)	0.55
- Secondary ID-TLR	0.3% (1)	0.0% (0)	1.00
VLST 3-4 years	0.0% (0)	0.0% (0)	1.00

* Cardiac death due to aortic rupture after AVR and CABG to the target vessel incorporated with peri-procedural TV-MI. Target lesion was patent.

** One of ID-TLR patient in BVS arm was treated by EES due to delivery failure of BVS.

Prospective, randomized, active control, open-label, multicenter study in 480 subjects enrolled from 24 sites in China


Inclusion: Up to 2 de novo lesions in separate native coronary arteries Lesion length ≤24 mm, RVD ≥2.5 mm - ≤3.75 mm, %DS ≥50% - <100% Exclusion: AMI, EF <30%, eGFR <30 mL/min/1.73m², LMCA, ostial lesion, excessive vessel tortuosity, heavy calcification, myocardial bridge, bifurcation with side branch ≥2 mm 1: 1 Randomization XIENCE V Absorb BVS Treat with single study device Treat with single study device Diameters: 2.5, 3.0, 3.5 mm Diameters: 2.5, 3.0. 3.5 mm Lengths: 8, 12, 18, 28 mm Lengths: 8, 12, 18, 28 mm Primary Endpoint: In-Segment Late Loss at 1 Year in the Per-Treatment-Evaluable (PTE) Population*

Target Lesion Failure (TLF)

Time (days)	0	37	208	298	393	758
Absorb BVS (# At Risk)	238	235	234	234	230	227
XIENCE V (# At Risk)	237	234	230	229	225	223

ABSORB

Scaffold/Stent Thrombosis

	Absorb BVS (N=241)	XIENCE V (N=239)	P-Value
All (0 - 730 days)	0.8% (2/237)	0.0% (0/231)	0.50
Definite	0.4% (1/237)	0.0% (0/231)	1.00
Probable	0.4% (1/237)	0.0% (0/231)	1.00
Early (0 – 30 days)	0.4% (1/238)	0.0% (0/236)	1.00
Late (31- 365 days)	0.0% (0/238)	0.0% (0/232)	1.00
Very Late (366- 730 days)	0.4% (1/237)	0.0% (0/231)	1.00

There were 1 probable, subacute (1-30d) ST and 1 definite, very late ST in the Absorb BVS arm.

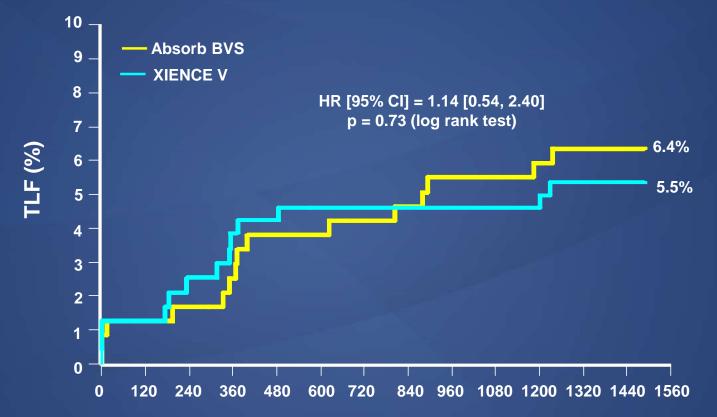
ABSORB

PSP Analysis for TLF & ST

		PSP*	Non-PSP
TLF	0-1 Year	0% (0/32)	3.9% (8/205)
	1-2 Year	0% (0/32)	1.5% (3/204)
ST	0-1 Year	0% (0/32)	0.5% (1/205)
	1-2 Year	0% (0/32)	0.5% (1/204)

This is a post-hoc analysis for hypothesis-generating only.

*PSP analysis (all lesions must satisfy all the criteria below) based on as-treated population:

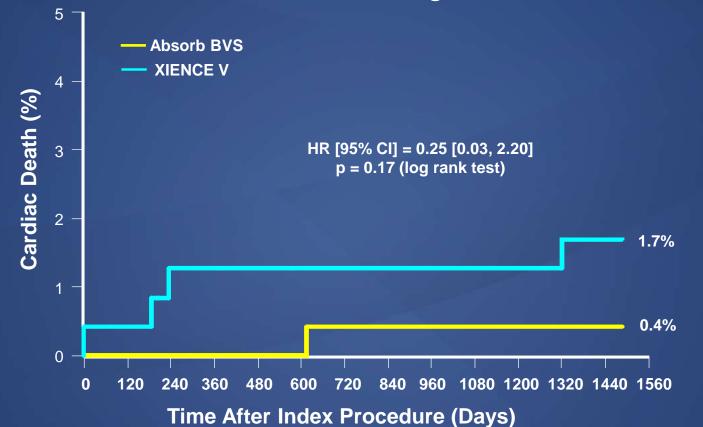

Pre-dilatation

ABSORB

- <u>Sizing</u> (vessel): 2.25mm ≤ QCA RVD ≤ 3.5 mm
- Post-dilatation:
- -Pressure > 16 atm

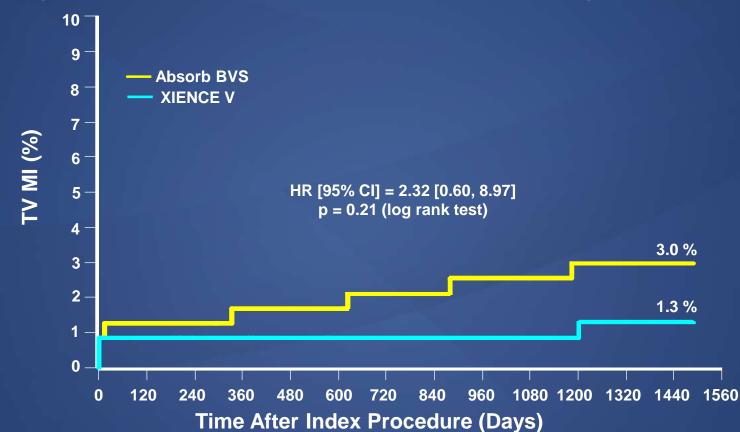
-Balloon diameter: scaffold diameter > 1:1 and balloon diameter ≤ scaffold diameter + 0.5mm

Target Lesion Failure Through 4 Years

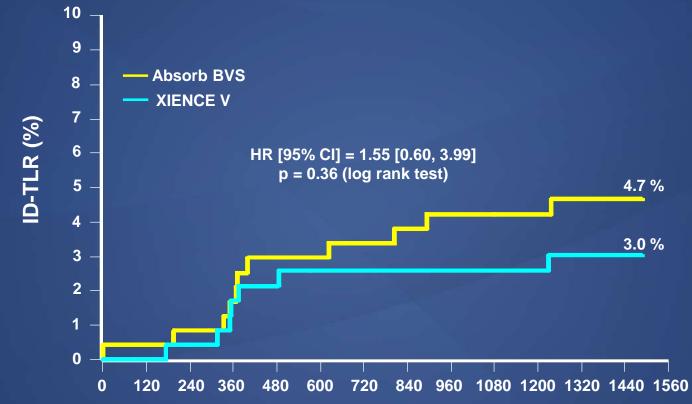


Time After Index Procedure (Days)

Time (days)	0	37	208	298	393	758	1123	1488
Absorb BVS (# At Risk)	238	235	234	233	229	225	220	217
XIENCE (# At Risk)	237	234	230	229	223	221	221	219

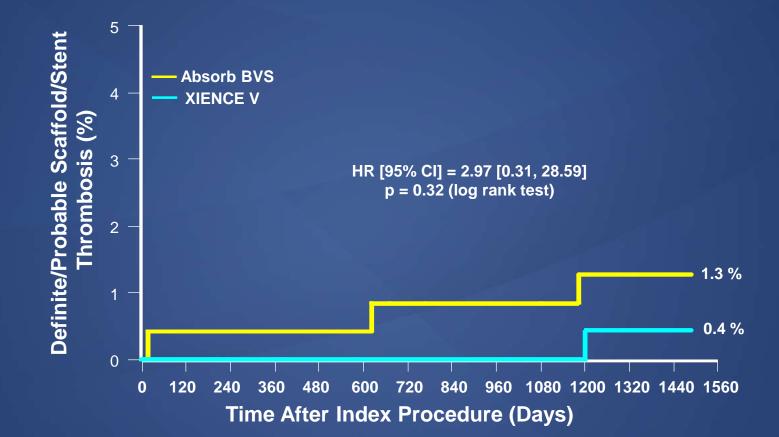


Cardiac Death Through 4 Years


Time (days)	0	37	208	298	393	758	1123	1488
Absorb BVS (# At Risk)	238	238	238	237	237	234	232	231
XIENCE (# At Risk)	237	236	233	232	230	229	229	228

Target-Vessel Myocardial Infarction Through 4 Years

Time (days)	0	37	208	298	393	758	1123	1488
Absorb BVS (# At Risk)	238	235	235	234	233	229	226	224
XIENCE (# At Risk)	237	234	231	230	228	227	227	226


Ischemia-Driven Target Lesion Revascularization Through 4 Years

Time After Index Procedure (Days)

Time (days)	0	37	208	298	393	758	1123	1488
Absorb BVS (# At Risk)	238	237	236	235	231	227	223	221
XIENCE (# At Risk)	237	236	232	231	225	223	223	221

Definite/Probable Scaffold/Stent Thrombosis Through 4 Years

Time (days)	0	37	208	298	393	758	1123	1488
Absorb BVS (# At Risk)	238	237	237	236	236	232	230	228
XIENCE (# At Risk)	237	236	233	232	230	229	229	228

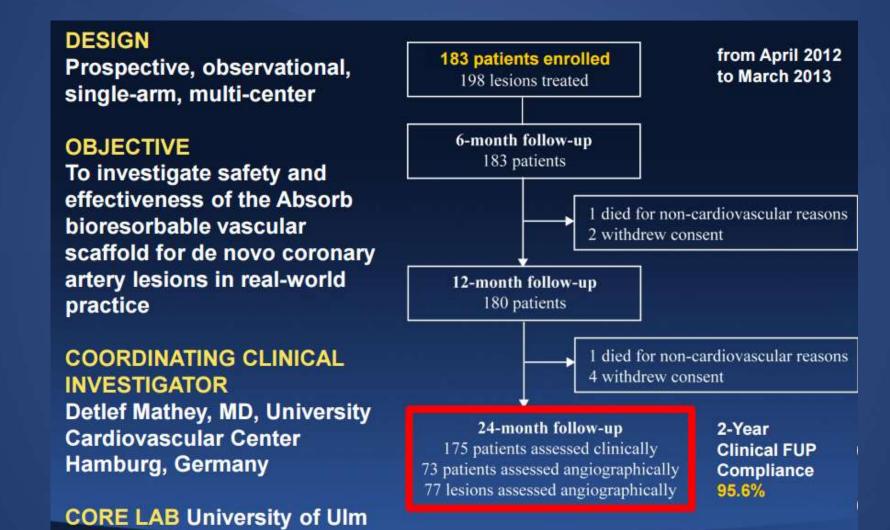
ASSURE (D. Mathey)

Objective: Measure Absorb safety, efficacy and performance in all-comers over 3 years

Design: Prospective, observational multi-center registry, 183 patients, 6 sites in Germany

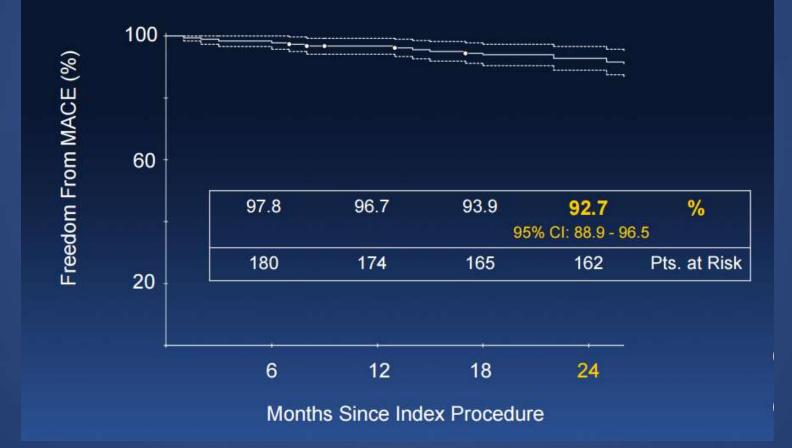
Primary	 Death (cardiovascular)
Endpoints:	• MI
	• TLR, TVR, TVF
	Angiographic parameter (QCA)

Twelve Months ASSURE, T. Schmitz, PCR 2014


ASSURE (D. Mathey) Twelve Months Clinical Results

Baseline Charactaristics	N = 183	12 Months ResultsN = 183
Hypertension	82.0%	Death* 0.5%
Diabetes	25.7%	Target lesion revascularization**2.8%
Dyslipidemia	76.0%	Myocardial infarction*** 1.6%
Angina (not stable)	21.3%	MACE 5%
ACC/AHA B2 or C lesions	64.6%	Stent Thrombosis 0%
Moderately to heavy Ca-lesions	15.7%	*Patient died due to major gastrointestinal bleeding
Diameter stenosis	64.4%	** Restenosis in complex lesions *** MI's were caused by non-TVF

Dr. Schmitz' conclusion: One-year ASSURE results suggest that BVS for de novo coronary artery disease are associated with favorable clinical and functional outcomes in all day clinical practice without mandatory IVUS or OCT guidance.



Dr. Mathey, TCT 2016

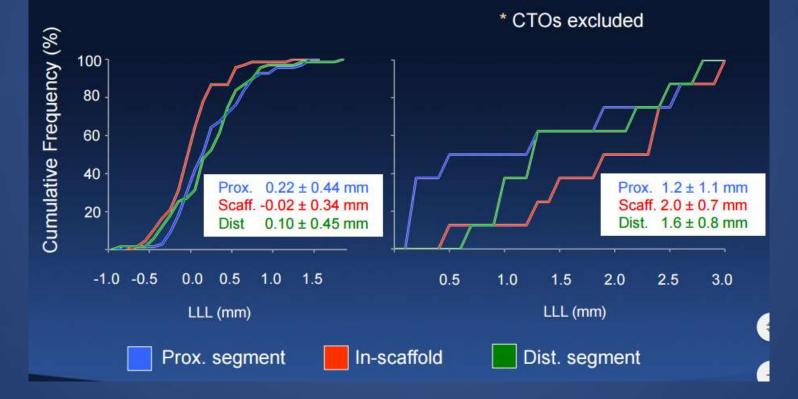
CTAP 2023

Freedom From MACE at 2 Years

Dr. Mathey, TCT 2016

Angiographic Findings 2-Year FU (22.2 ± 6 Months)

	77 lesions
Post Procedure (mean)	
Acute gain, mm	1.7
% DS in-scaffold	14.6
Acute gain, %	61.8
2-Year FU (mean)	
LLL in-scaffold, mm	0.24
% DS in-scaffold	20.8
Net gain, %	47.2


28th TCTAP 2023

Late Loss at 2 Years

Restenoses excluded (N=67)

Restenoses (N=8*)

Dr. Mathey, TCT 2016

ABSORB IV

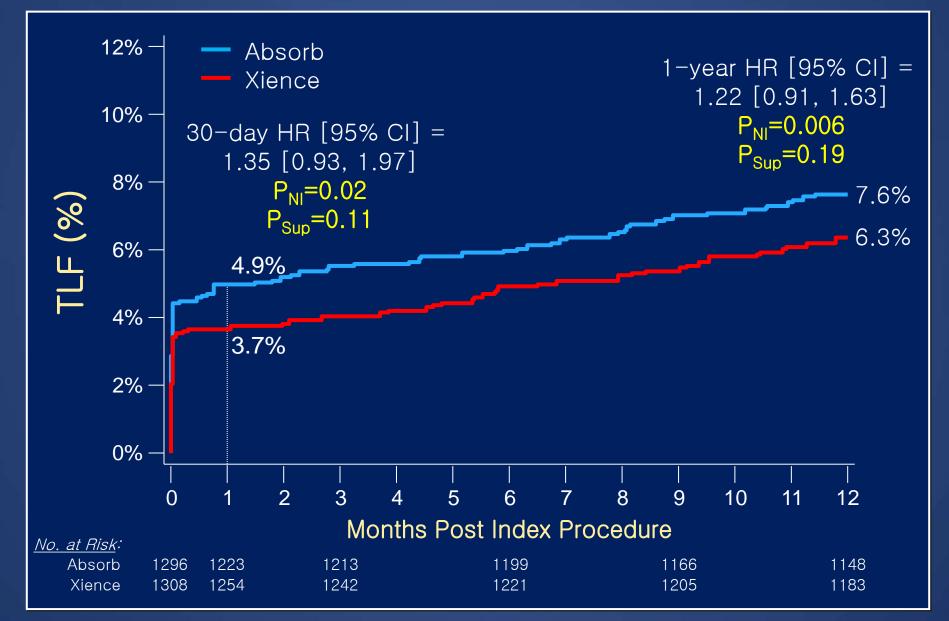
ABSORB III + IV Clinical Trial Program ABSORB IV

~3,000 pts randomized 1:1 ABSORB v XIENCE

RVD: 2.50 - 3.75 mm; Lesion length: ≤24 mm

Scaffold diameters: 2.5, 3.0 and 3.5 mm Scaffold lengths: 12, 18, and 28 mm

~5,000 total pts (ABSORB III + IV) with up to 2 de novo lesions in different epicardial vessels randomized, with FU for at least 5 years, at up to 160 US and non-US sites


Primary endpoints:

1. Angina at 1 year (ABSORB IV)

2. TLF between 1 and 5 years (landmark analysis)

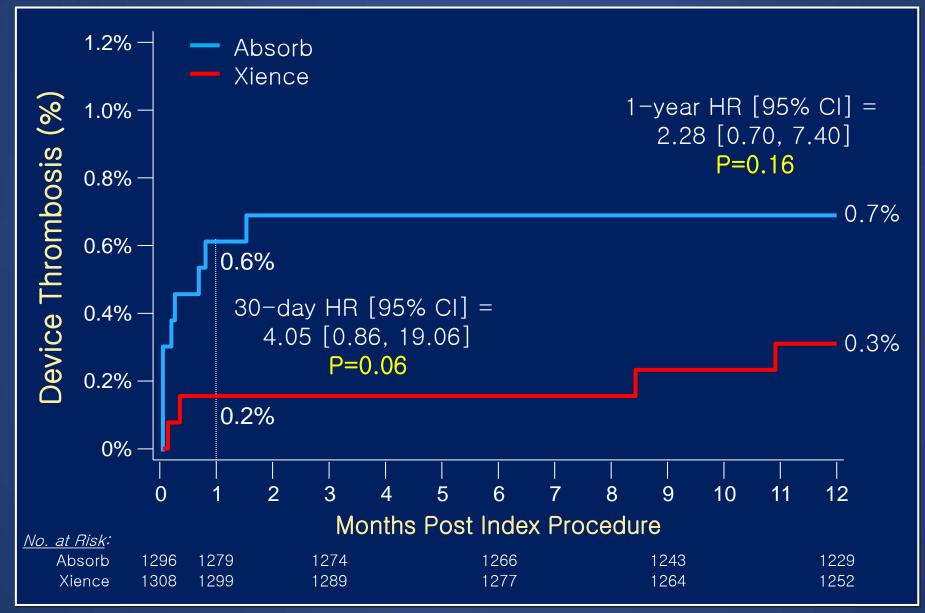
ABSORB IV

28th TCTAP 2023

CVRF

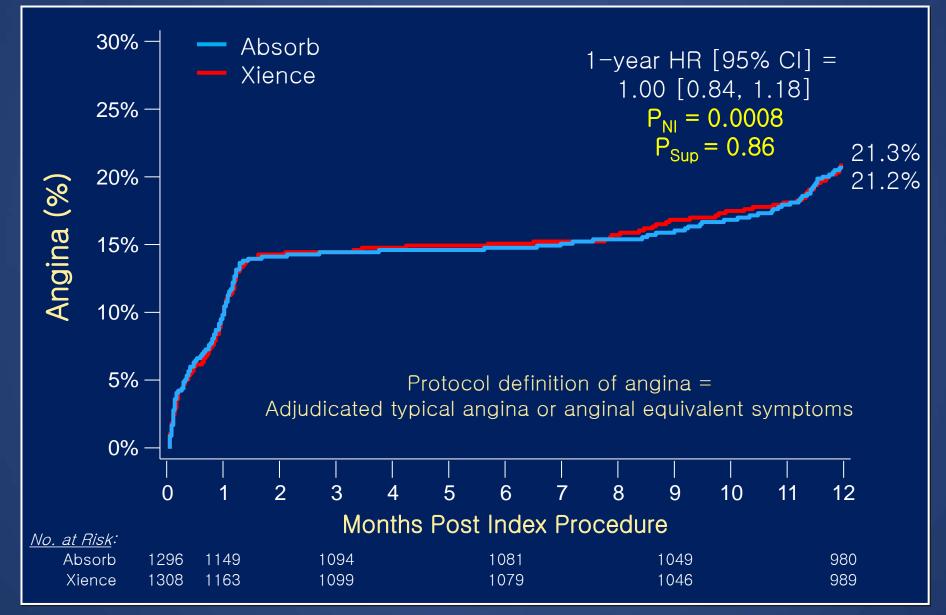
ABSORB IV 1-Year Endpoints

	Absorb (N=1296)	Xience (N=1308)	p-value
TLF	7.6% (98)	6.3% (82)	0.19
- Cardiac death	0.8% (10)	0.6% (8)	0.62
- TV-MI	5.8% (75)	4.5% (58)	0.12
- ID-TLR	2.9% (37)	1.9% (24)	0.08
TVF (CD, MI, ID-TVR)	8.7% (111)	7.6% (99)	0.33
PoCE (death, MI, revasc)	9.7% (124)	8.6% (112)	0.35
- All-cause death	1.3% (16)	1.1% (14)	0.69
- MI	6.2% (80)	5.0% (65)	0.18
- Peri-procedural MI	3.8% (49)	3.4% (44)	0.56
- Spontaneous	2.6% (33)	1.7%(22)	0.12
- All revascularization	4.9% (63)	3.9% (50)	0.19
- ID-TVR	4.0% (51)	2.9% (37)	0.11

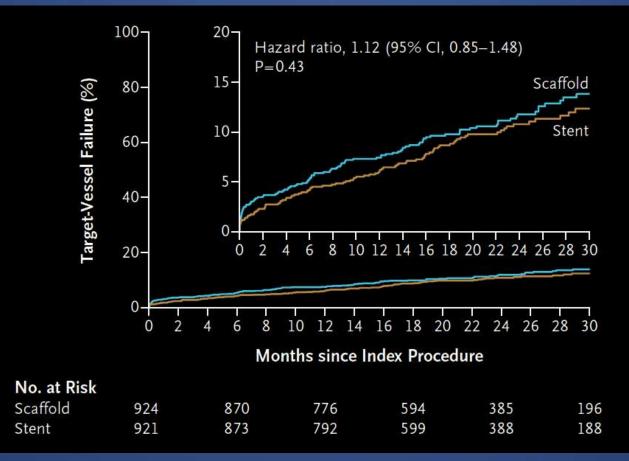


ABSORB IV 30-Day Endpoints

	Absorb (N=1296)	Xience (N=1308)	p-value
TLF	4.9% (64)	3.7% (48)	0.11
- Cardiac death	0.1% (1)	0% (0)	0.32
- TV-MI	4.4% (57)	3.6% (47)	0.29
- ID-TLR	1.0% (13)	0.2% (3)	0.02
TVF (CD, MI, ID-TVR)	5.1% (66)	3.7% (48)	0.08
PoCE (death, MI, revasc)	5.2% (67)	4.1% (53)	0.17
- All-cause death	0.1% (1)	0.1% (1)	0.99
- MI	4.5% (58)	3.6% (47)	0.25
- Peri-procedural MI	3.8% (49)	3.4% (44)	0.56
- Spontaneous	0.8% (10)	0.2% (3)	0.05
- All revascularization	1.5% (19)	0.6% (8)	0.03
- ID-TVR	1.2% (16)	0.2% (3)	0.003


ABSORB IV

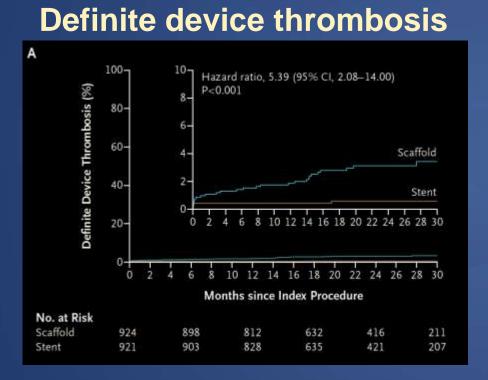
28th TCTAP 2023


ABSORB IV

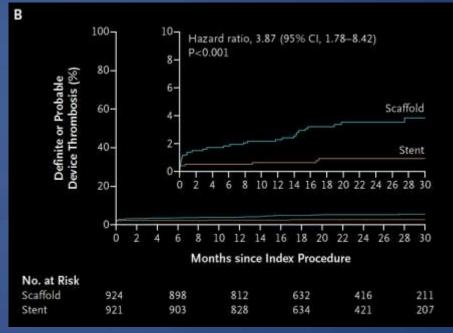
CVRF

AIDA 2-years

Target-vessel Failure

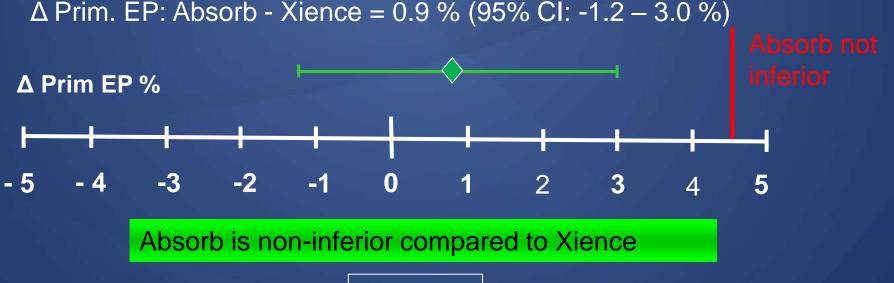


28th TCTAP 2023


J J. Wykrzykowska et al., NEJM 2017

AIDA 2-years

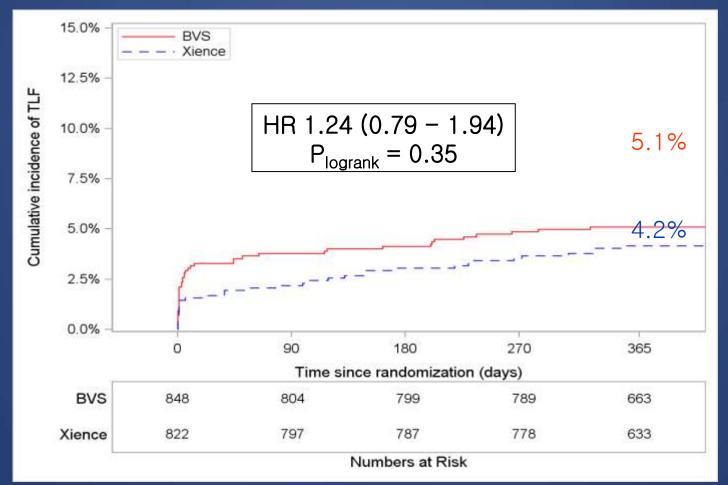
Definite or probaable device thrombosis



COMPARE-ABSORB

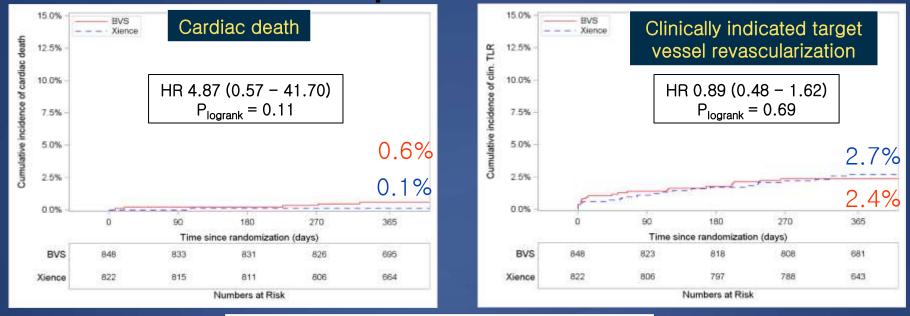
Primary endpoint 1 year TLF non-inferiority analysis

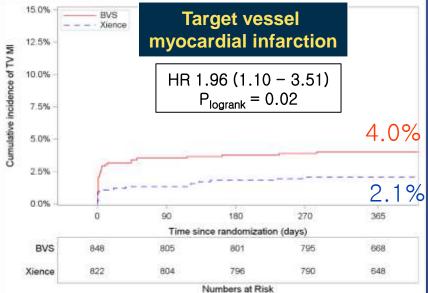
- Assumed difference between Xience and Absorb : 0 %
- Non inferiority margin : 4.5 %
- One sided 2.5% significance level
- TLF rate Xience 4.2%
- TLF rate Absorb 5.1%



COMPARE-ABSORB

TLF at 1 year


Cardiac death, target vessel myocardial infarction, clinically-indicated target lesion revascularization

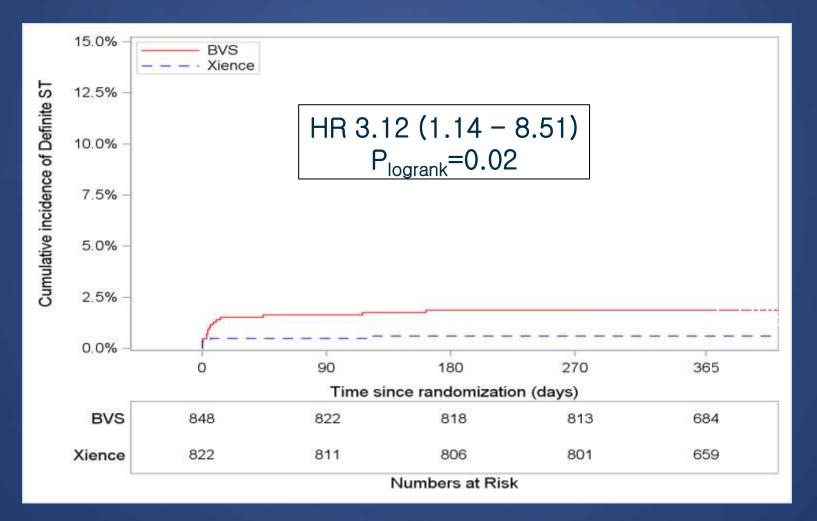


TCTAP 2023

COMPARE-ABSORB Components of TLF

MI definition: SCAI (peri-procedural) TUD (spontaneous)

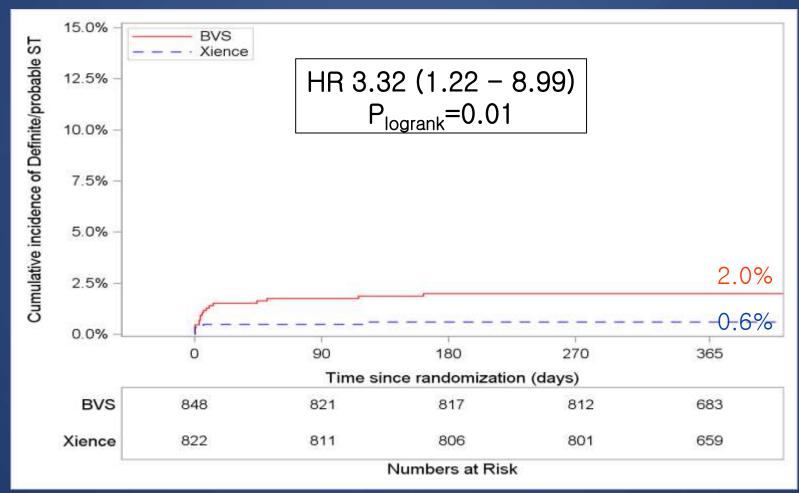
•



28th TCTAP 2023

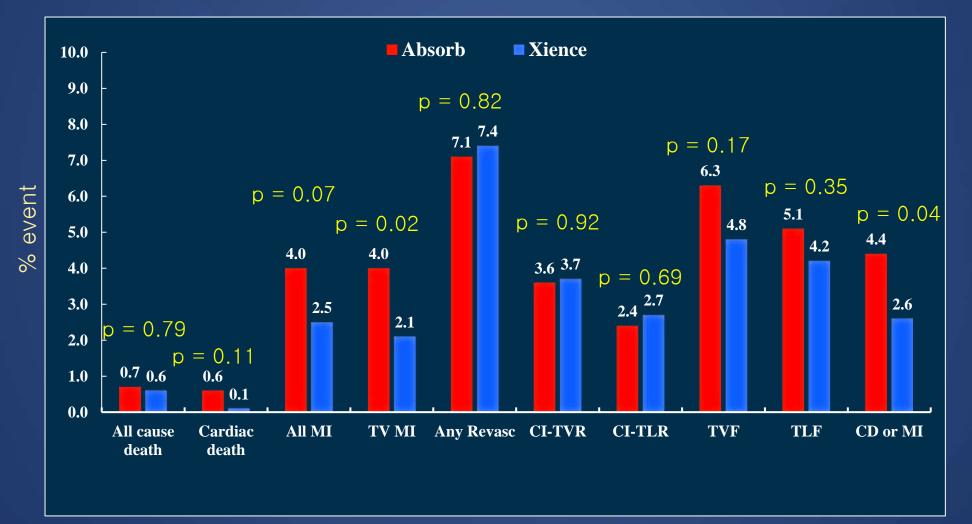
COMPARE-ABSORB

Stent/Scaffold Thrombosis @ 1 year

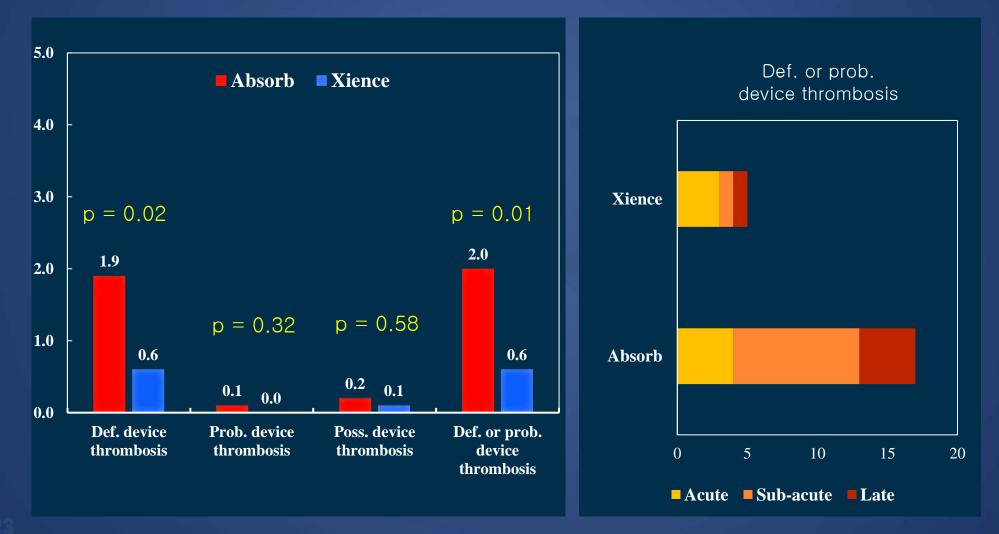

Definite Stent/Scaffold Thrombosis (ARC definition)

28th TCTAP 2023

COMPARE-ABSORB Stent/Scaffold Thrombosis @ 1 year Definite and Probable Stent/Scaffold Thrombosis (ARC definition)

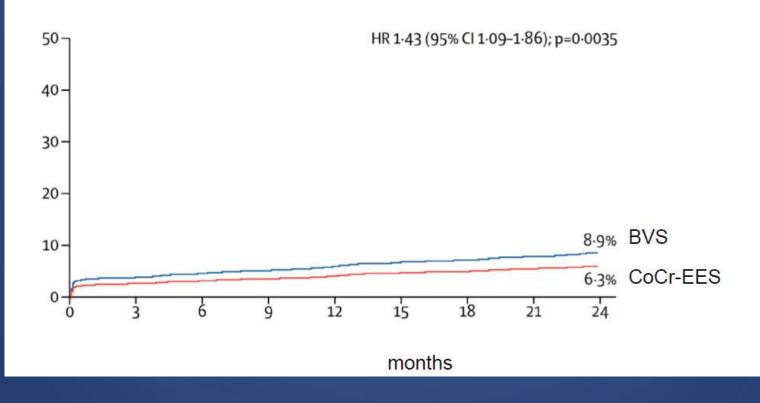


COMPARE-ABSORB


Clinical events

COMPARE-ABSORB

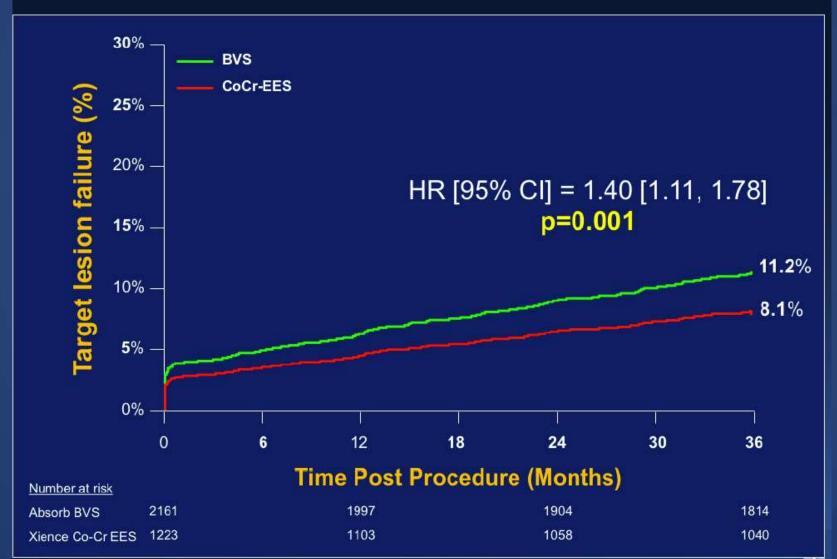
Device thrombosis

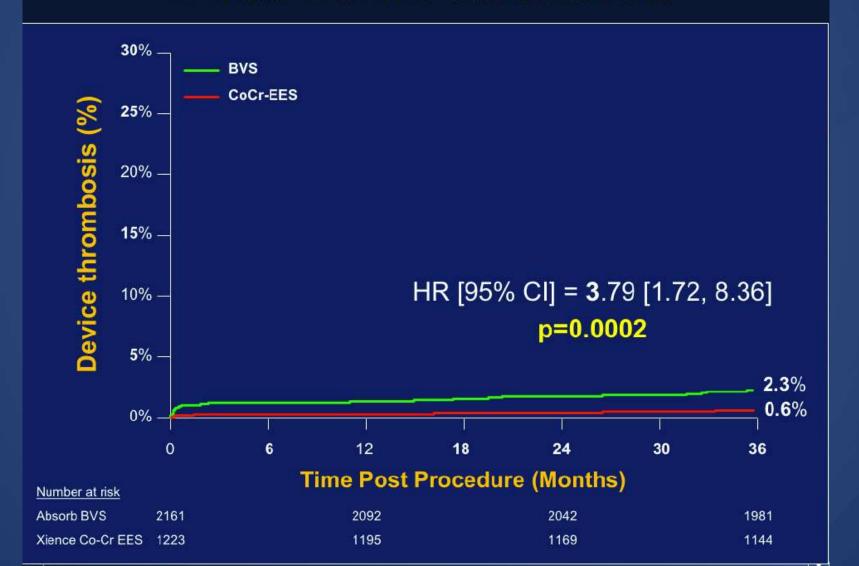


CVRF

Meta-analysis of ABSORB

Indivitual pt data pooled analysis of 4 randomized trials of BVS vs. EES (ABSORB II, III, Japan, China; N=3389 pts)

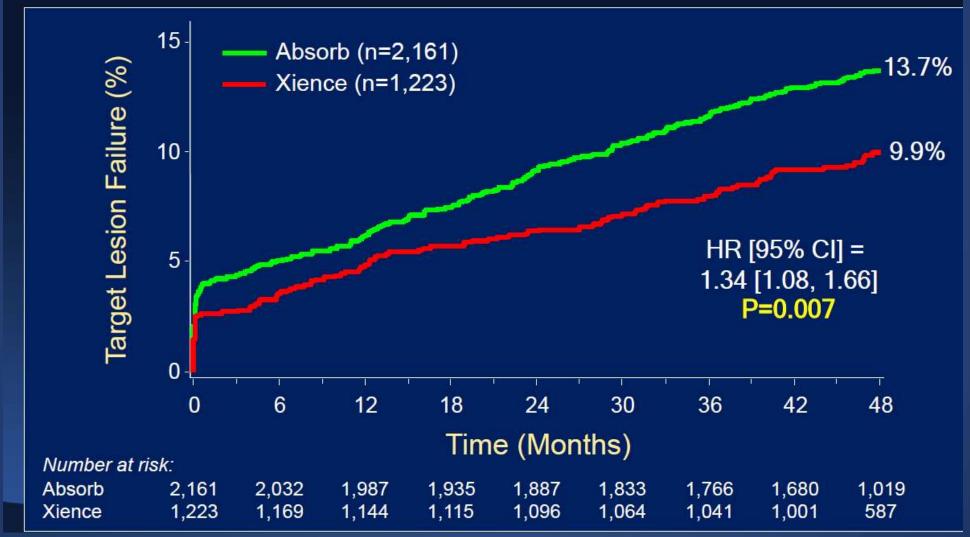

2-year target lesion failure



ABSORB: 3-year Outcomes Meta-analysis of 4 BVS vs. EES RCTs (n=3,389 pts) 3-Year TLF

CVRF

ABSORB: 3-year Outcomes Meta-analysis of 4 BVS vs. EES RCTs (n=3,389 pts) 3-Year Device Thrombosis



CVRF

TCTAP 2023

ABSORB: 4-year Outcomes Meta-analysis of 4 BVS vs. EES RCTs (n=3,389 pts) 4-Year TLF

ABSORB

CVRF

ABSORB: 4-year Outcomes Meta-analysis of 4 BVS vs. EES RCTs (n=3,389 pts) 4-Year Device Thrombosis

Conclusions from 4 trials and 3,389 randomized patients

- Absorb BVS resulted in higher cumulative 4-year rates of TLF and device thrombosis compared with Xience CoCr-EES
- However, after 3 years, the point of complete polymer bioresorption, the excess risk from BVS has resolved, offering the potential for the long-term advantages of bioresorbable scaffold technology to emerge

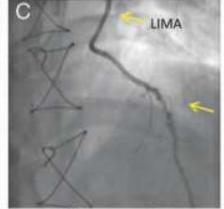
ABSORB

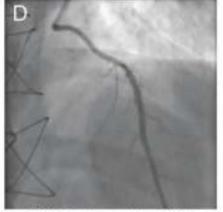
BRS and imaging



Left main stem and osteal LAD disease

Long CTO of mid-RCA




Before procedure

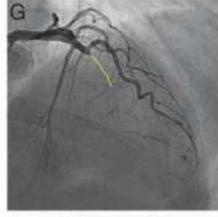
A A

After BVS implantation



Before procedure

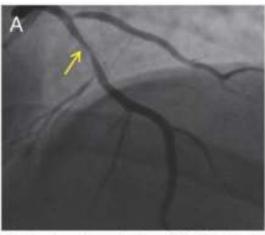
BVS implanted via LIMA


CTO of mid-LAD

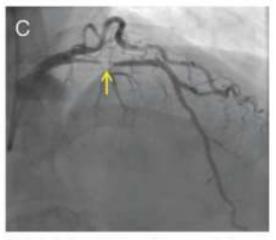
Before procedure

After BVS implantation

Before procedure

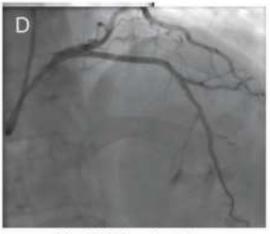

After BVS implantation

Iqbal J et al. Eur Heart J 2014;35:765


ABSORB

LAD instent restenosis

Instent restenosis in mid-LAD stent


Non-ST elevation MI

Sub-total occlusion at presentation

After BVS implantation

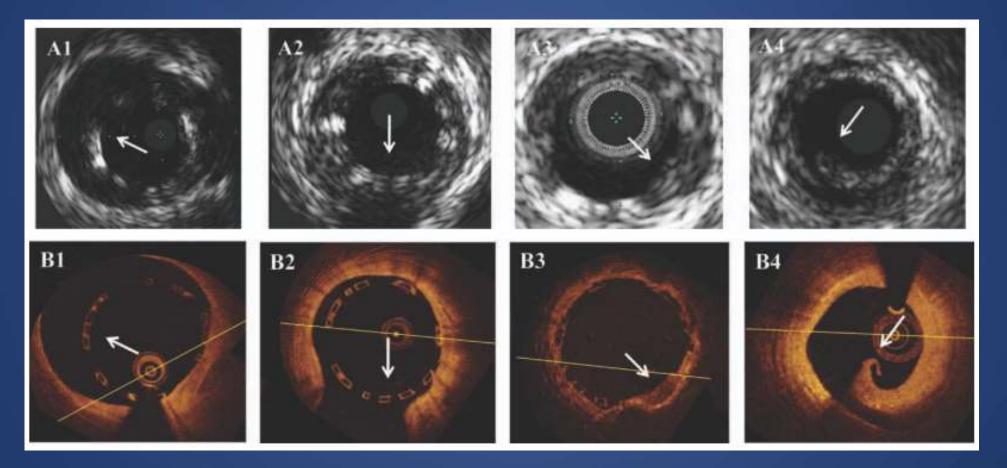
After BVS implantation

ST elevation MI

RCA occlusion at presentation

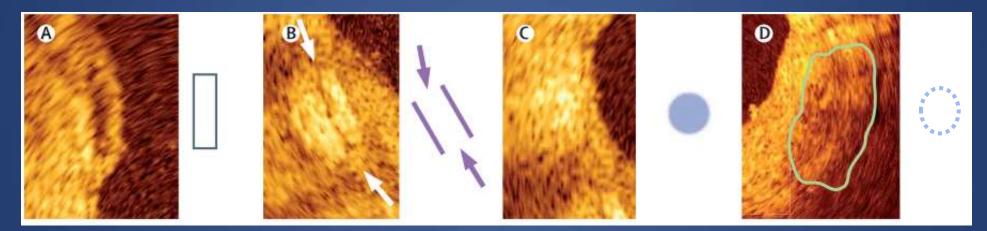
After BVS implantation

Iqbal J et al. Eur Heart J 2014;35:765


IVUS - Good penetration

- Critical to guide BRS deployment
- Useful information on vessel morphology, the need for lesion preparation and site selection

Poor resolution Poor reproducibility



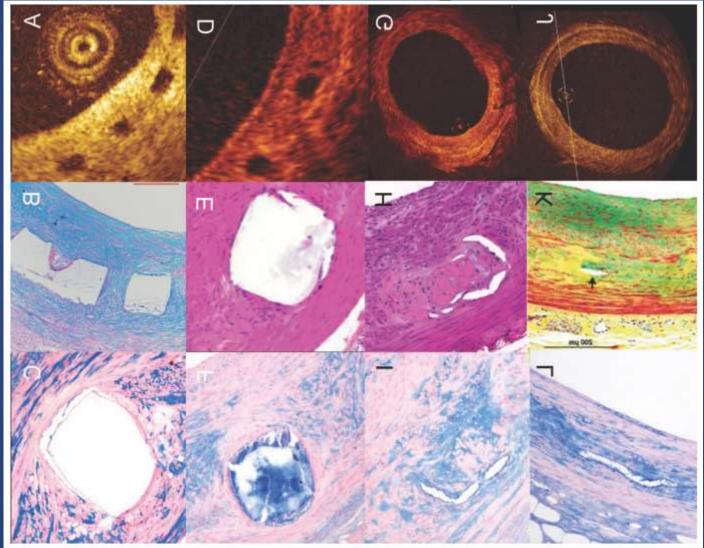
Gomez-Lara et al. CCI 2012;79:890

Morphologic changes in strut

PreservedOpen BoxDissolvedDissolvedBoxBright BoxBlack Box

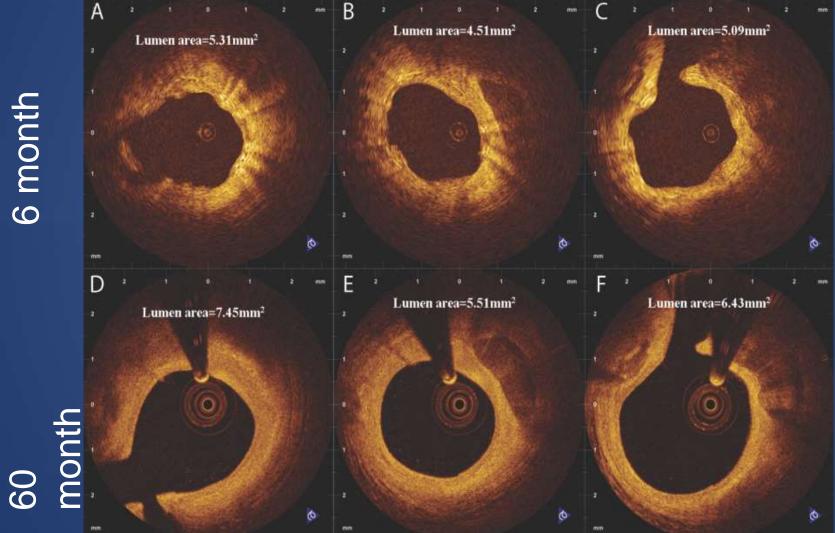
Ormiston JA et al. Lancet 2008;371:907

Resorption of malapposed

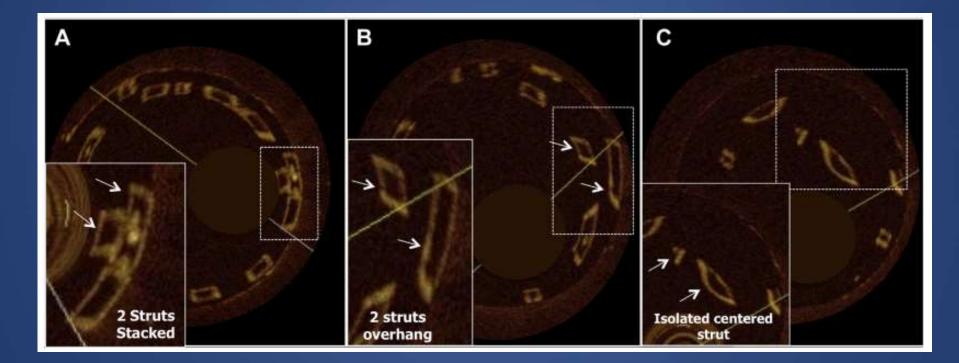


Serruys PW et al. Lancet 2009;373:897

BRS Resorption

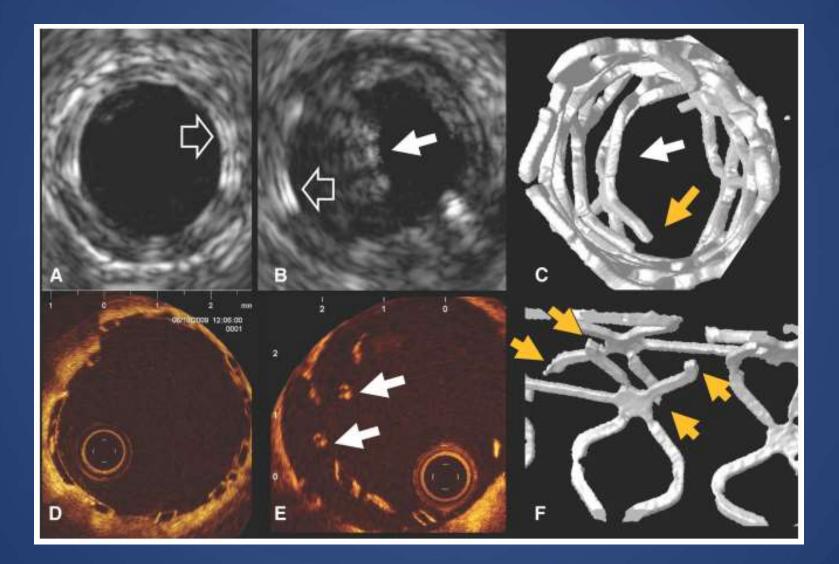


Onuma Y et al. Circulation 2011;123:779


Plaque Stabilization and Lumen Enlargement

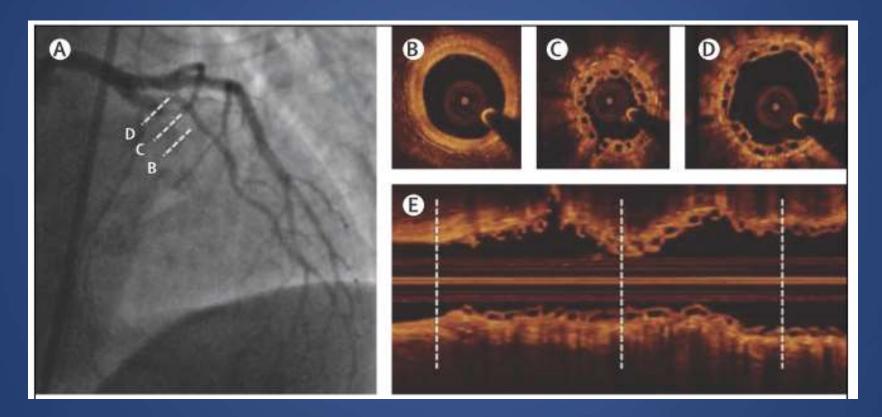
Karanasos A et al. Circulation 2012;126:e89

OCT of acute scaffold disruption



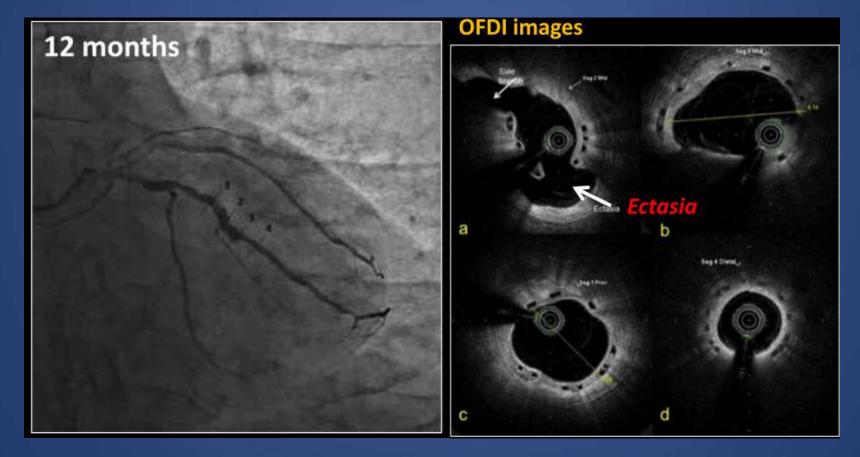
Onuma Y et al. JACC Int 2014;7:1400

Strut Fracture



Ormiston JA et al. Circ Cardiovasc Int 2011;4:535

Scaffold thrombosis

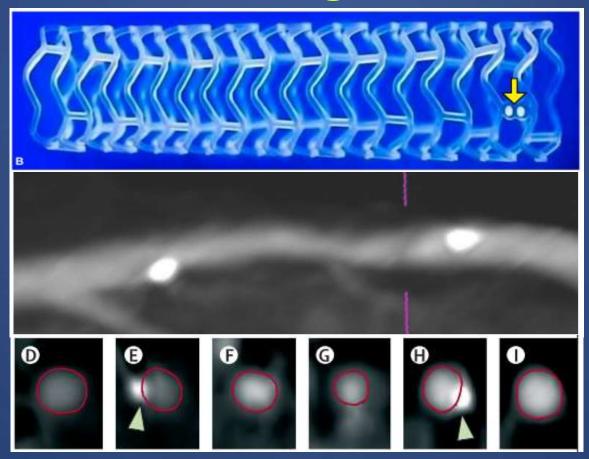

Late Stent Thrombosis

Late Malapposition

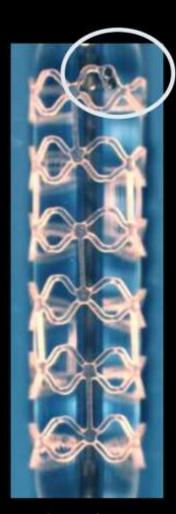
 A 54 year-old man underwent PCI with Absorb 2.5 X 18mm

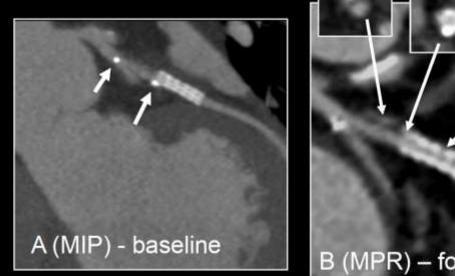
Cortese B. et al. 2014 Catheter Cardiovasc Interv

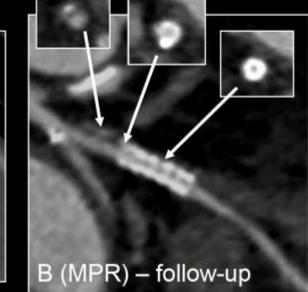
Two modalities seem to be complementary


- While IVUS could be more helpful for the evaluation of the plaque morphology and in the preparation phase,
- OCT allows better qualitative scaffold analysis and follow-up evaluations.

Radiolucent, with radiopaque platinum markers No blooming artifact !



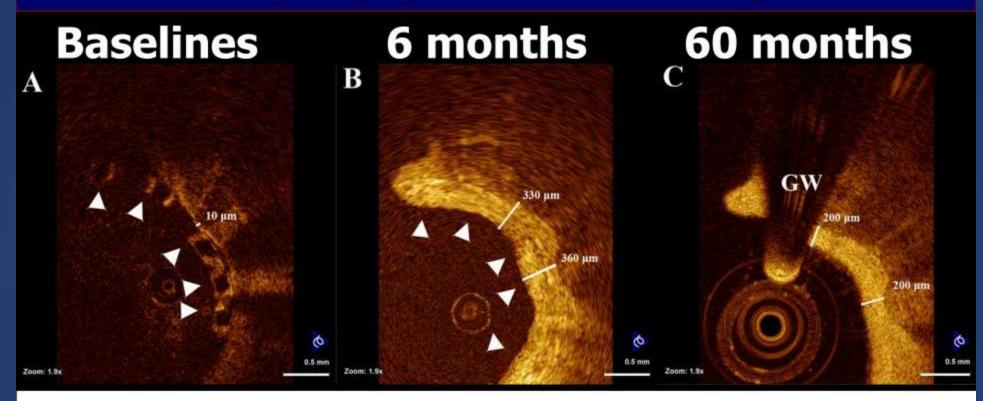

TCTAP 2023


Gogas BD et al. Hellenic J Cardiol 2012;53:309

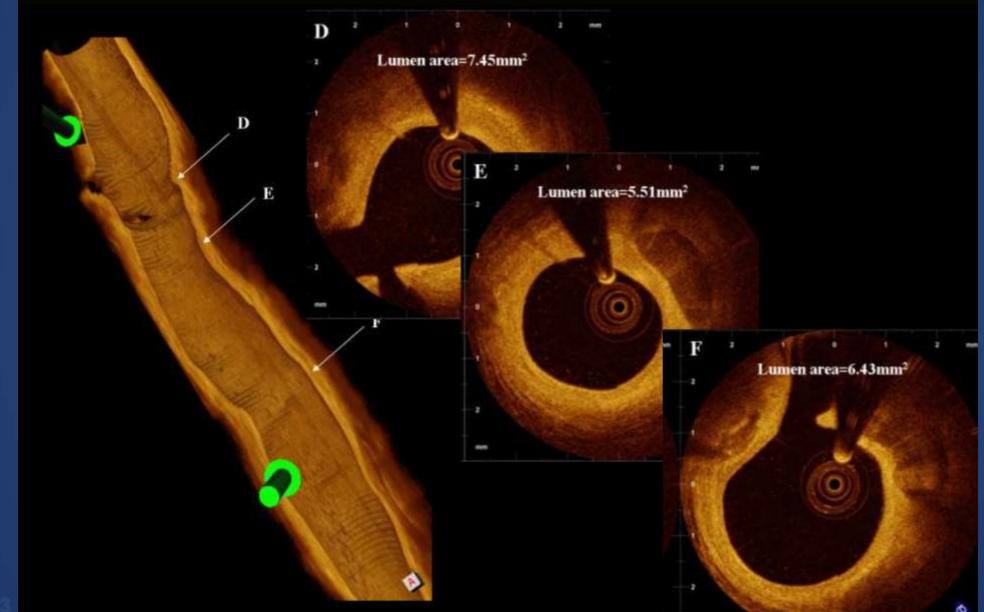
Metal vs Bioresorbable scaffold by MSCT

- Absorbable and metal stent implantation (bail-out) 0
- Highly attenuating distal metal stent well visible 0
- Only prox./dist. markers absorbable stent detectable
- In-stent plaque remains visible

*marker

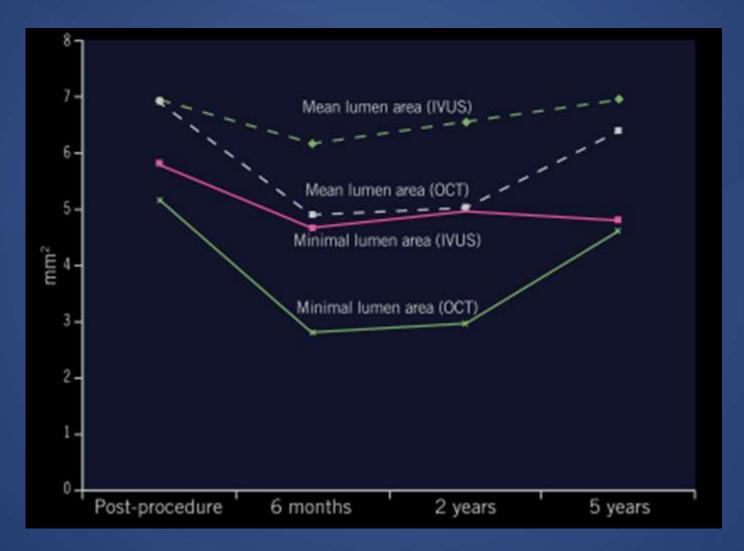

Serial imaging at 6m,24m and 60m

- MSCT feasibility of functional assessment
- OCT Plaque reduction and Vasomotion restoration


. Sealing and shielding of plaques as a result of scaffold implantation : can the scaffold cap the plaque? 60 Months Follow up

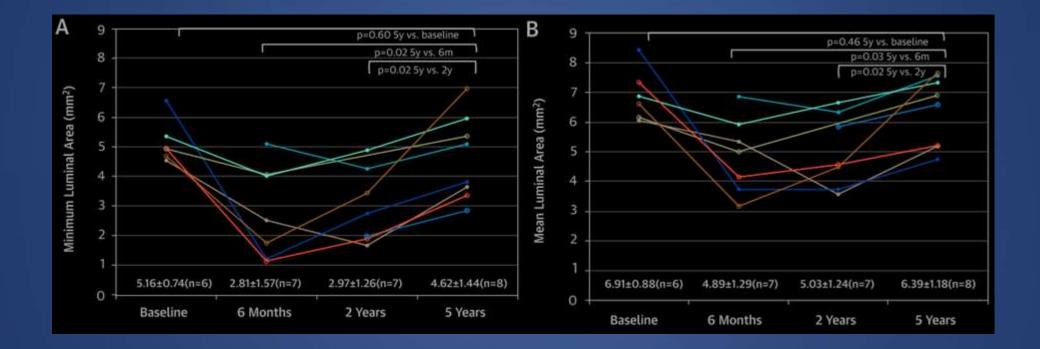
ABSORB cohort A (n=30)

5-Year Follow-up OCT of ABSORB A


OCT optimization

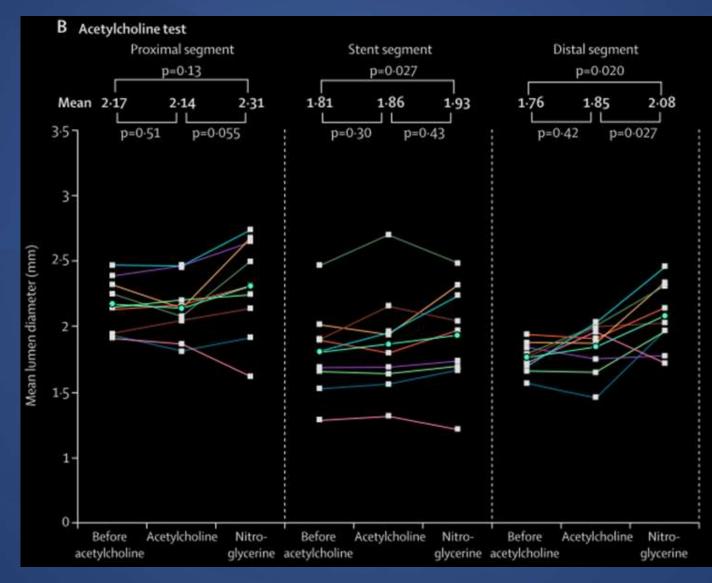
	Not requiring OCT Optimization (n=21)	Requireing OCT optimization (n=8)	P-value
Age	50.8 ± 11.1	56.1 ± 17.8	0.34
Female	2 (9.5%)	1 (12.5%)	0.82
Target vessel			
LAD	9 (75%)	3 (25%)	0.80
LCx	6 (66%)	3 (33%)	0.66
RCA	5 (71%)	2 (29%)	0.95
Lesion type, A	10 (66%)	5 (33%)	0.49
Lesion type, B or C	11 (79%)	3 (21%)	0.49
Mean n. POBA	8.7 ± 3.3	16.5 ± 11.3	<0.01
Length of procedure (min)	83.7 ± 26.5	113.7 ± 39.0	<0.05

ABSORB Cohort A IVUS and OCT

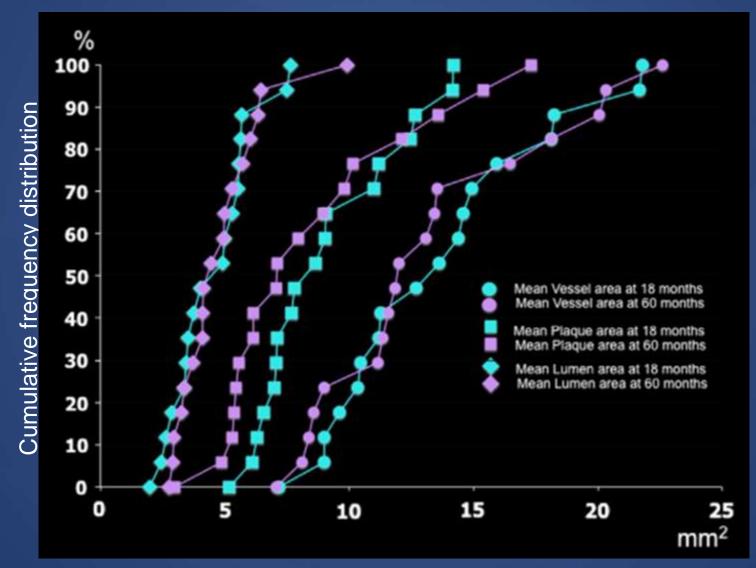


Simsek C et al. EuroInt 2014;10 e-pub

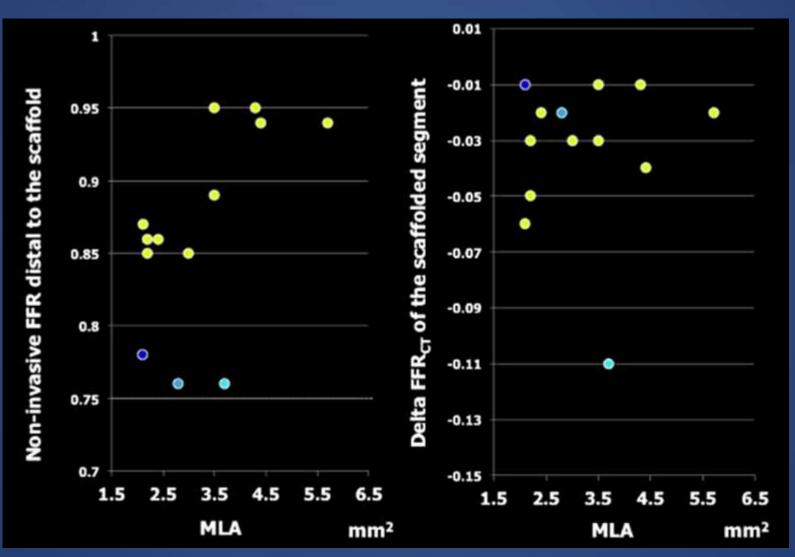
ABSORB Cohort A Serial Luminal Measurement



Karanasos A et al. JACC 2014;64:2343


Vasomotion Restoration

ABSORB Cohort A MLA, Plaque area, Vessel area



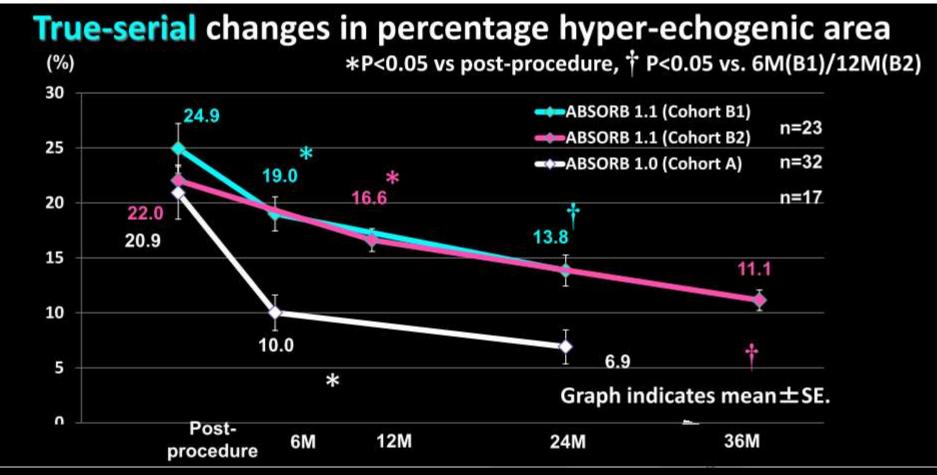
TCTAP 2023

Onuma Y et al. JACC Interv 2013;6:999

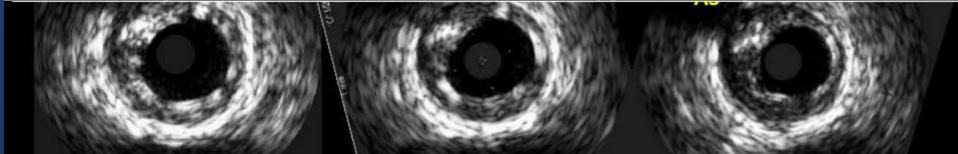
ABSORB Cohort A MLA VS FFRCT

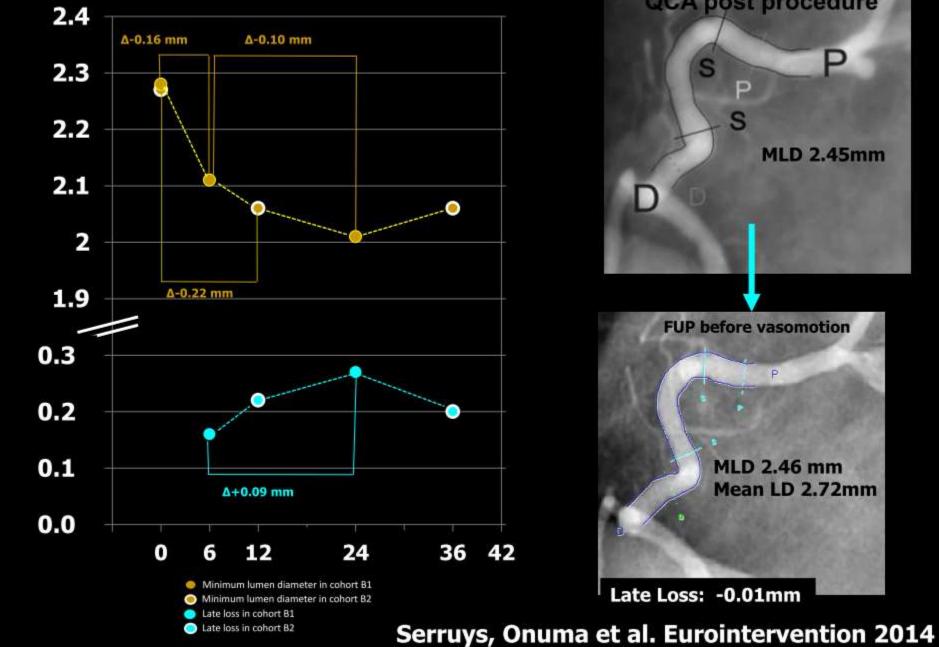
TCTAP 2023

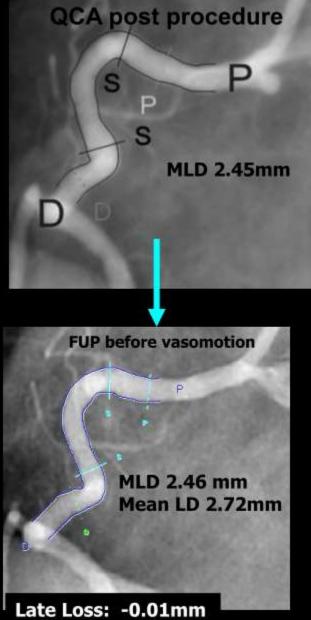
Onuma Y et al. JACC Interv 2013;6:999

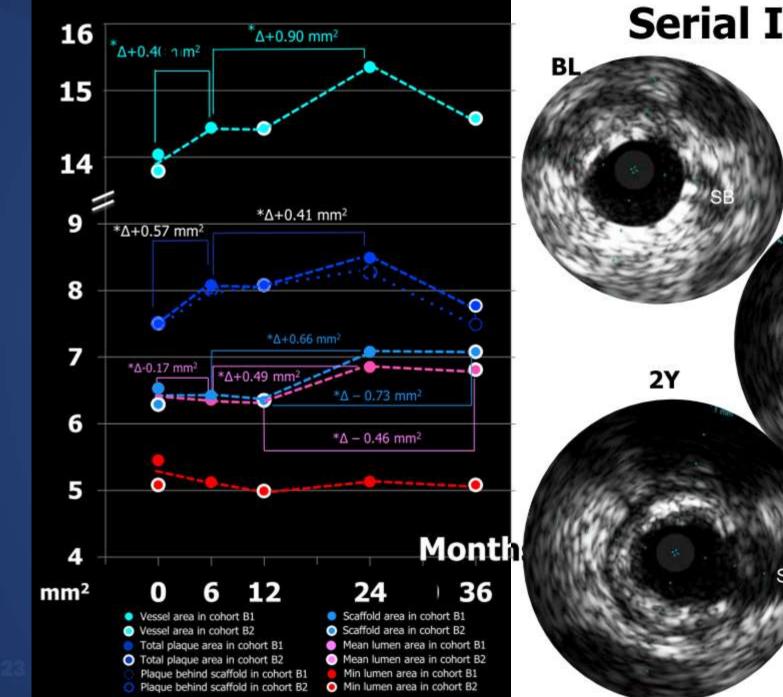


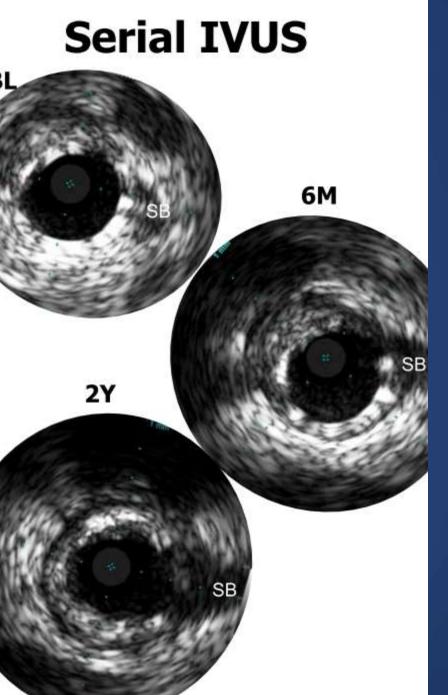
Imaging at 3 year


- Advanced bioresorption of BVS (VH / IVUS echogenicity)
- Acceptable angiographic late luminal loss between 1 and 3 yr (binary 6%)
- Increased MLA (IVUS and OCT)
- Biphasic change of total plaque area
 - \uparrow bewteen 1 and 2 yr but \downarrow between 2 and 3 yr

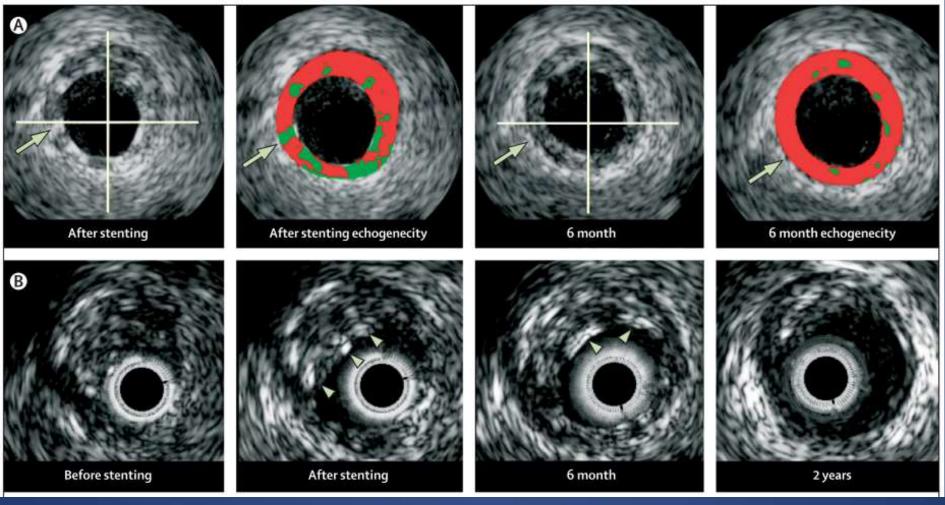

The actual duration of resorption of the second generation is in vivo approximately 18 months longer than the first generation, and the mass loss of 2nd generation ABSORB scaffold takes approximately 36 months





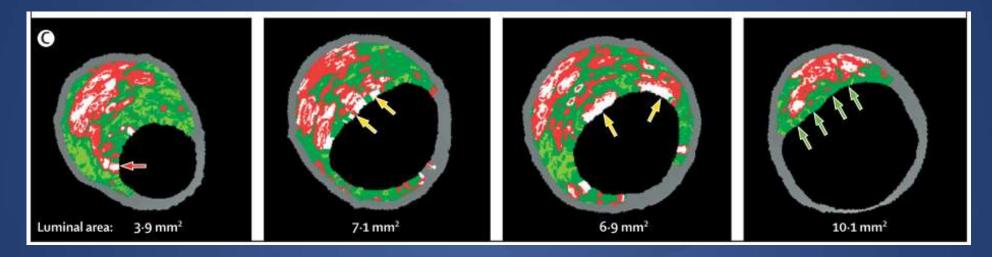

А

Serial QCA without TLR cases



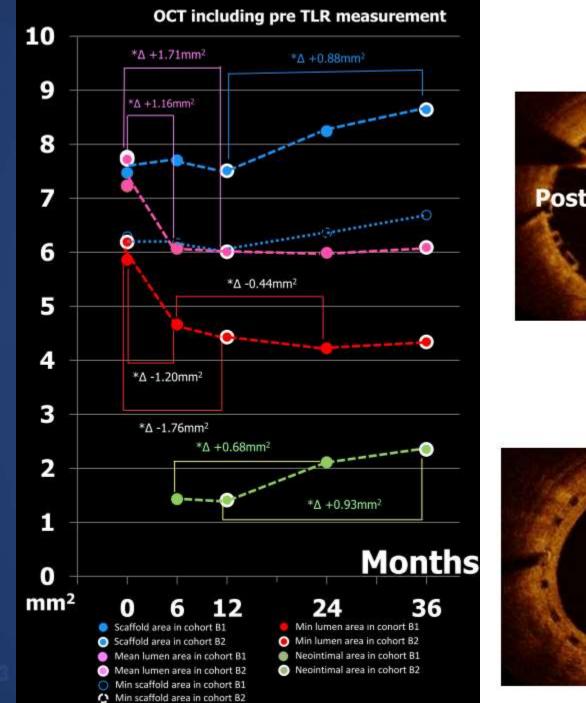
CVRF

ABSORB Cohort B



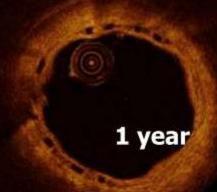
Serruys PW et al. Lancet 2009;373:897 Serruys PW et al. EuroInt 2014 e-pub

28th TCTAP 2023

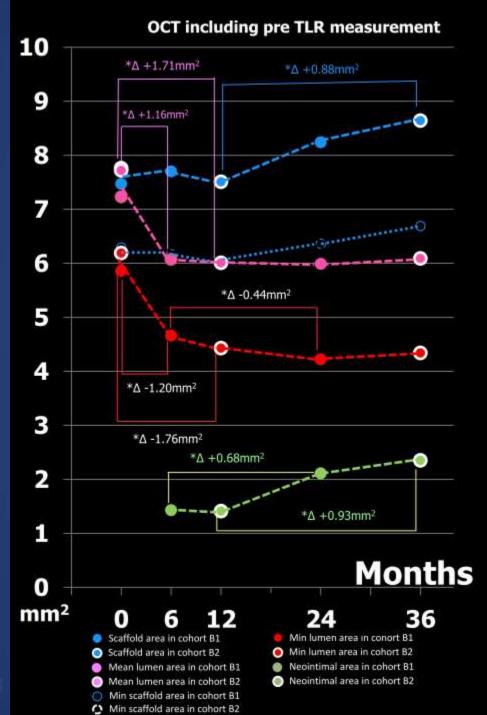

CVRF

ABSORB Cohort B VH-IVUS

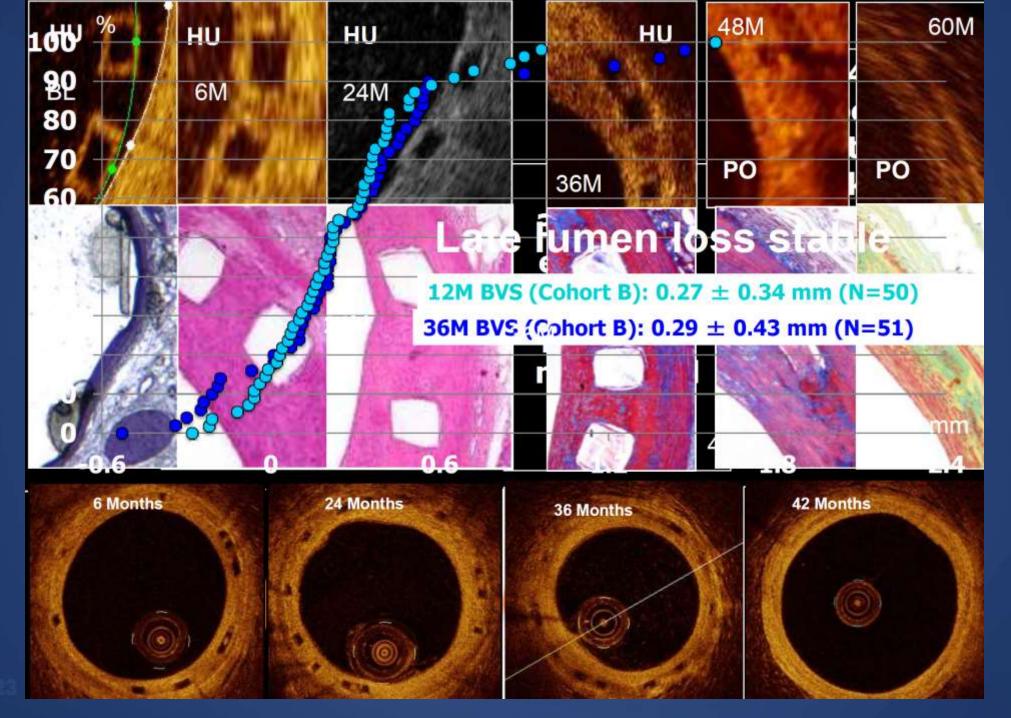
	Baseline (n=36)	1yr (n=36)	3yr (n=36)	р
Dense calcium (%)	30.74±10.11	24.95±8.28	21.84±8.41	<0.001
Necrotic Core (%)	32.10±6.62	30.01±6.29	26.11±5.99	<0.001
Fibrofatty (%)	2.94 ± 2.43	4.23±2.29	6.87±3.66	<0.001
Fibrous (%)	34.22±10.05	40.80±9.60	45.18±9.38	<0.001


Serruys PW et al. Lancet 2009;373:897 Serruys PW et al. EuroInt 2014 e-pub

Serial OCT

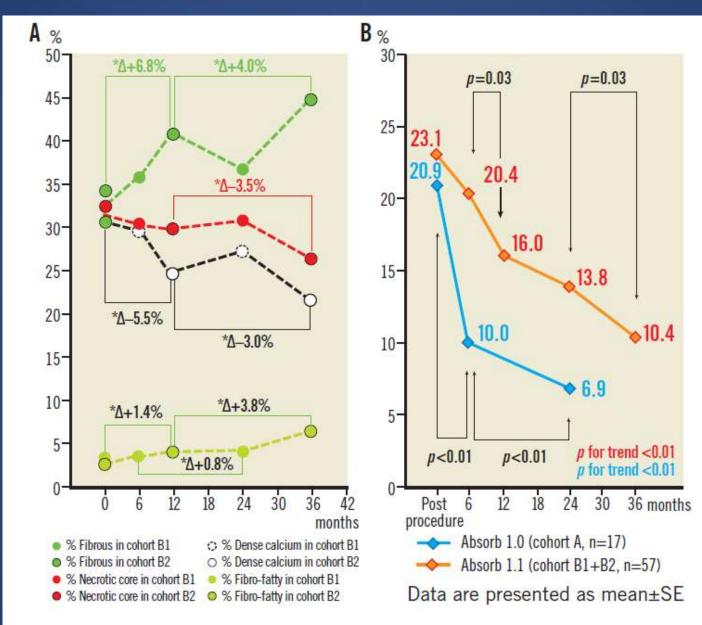


3 year



Serial OCT

- The mean and minimum scaffold area's significantly increase between 1 and 3 years and compensate for the increase in neointimal hyperplasia
- As a consequence, mean lumen area and minimal lumen area remained unchanged between 1 year to 3 years.



TCTAP 202

ABSORB Cohort B

ABSORB Cohort A & B

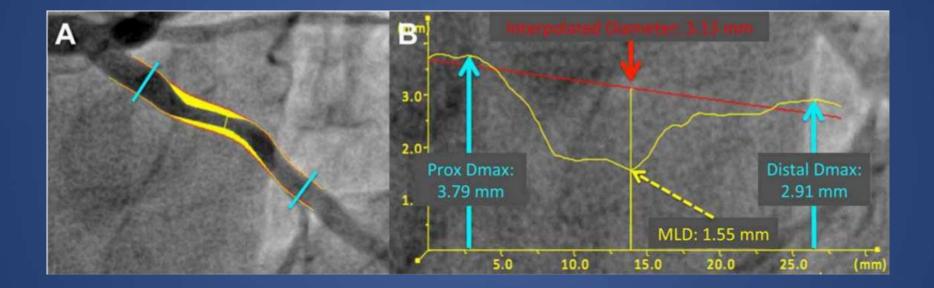
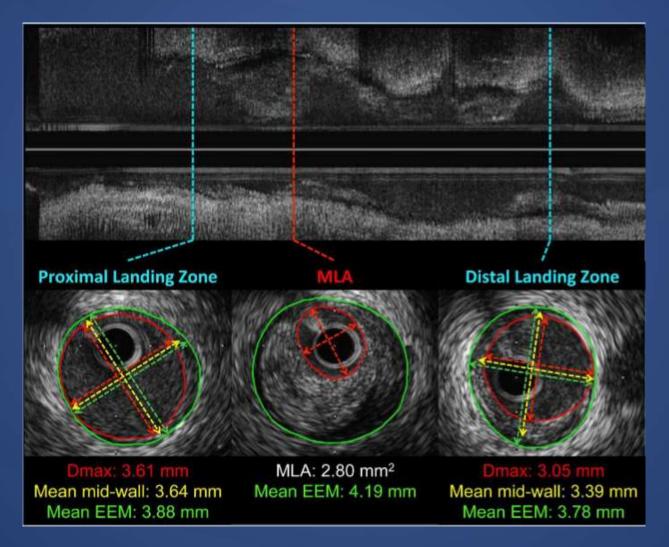


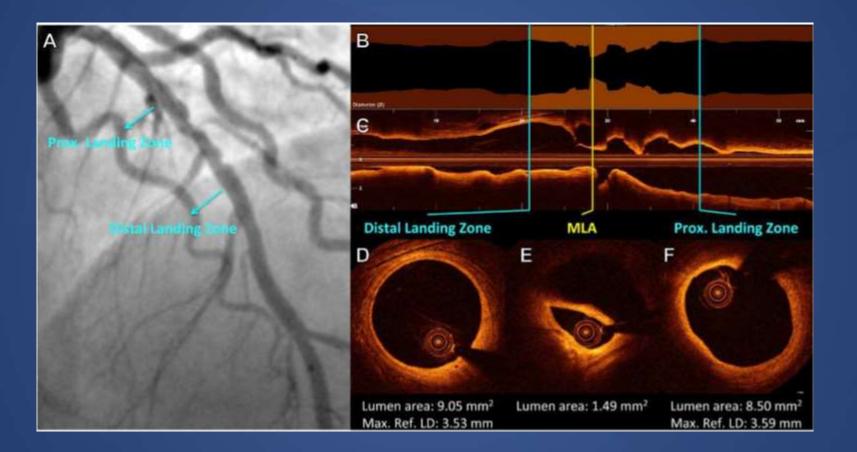
Image for BRS implantation

Vessel sizing by QCA



Catheterization and Cardiovascular Interventions 88:S38–S53 (2016)

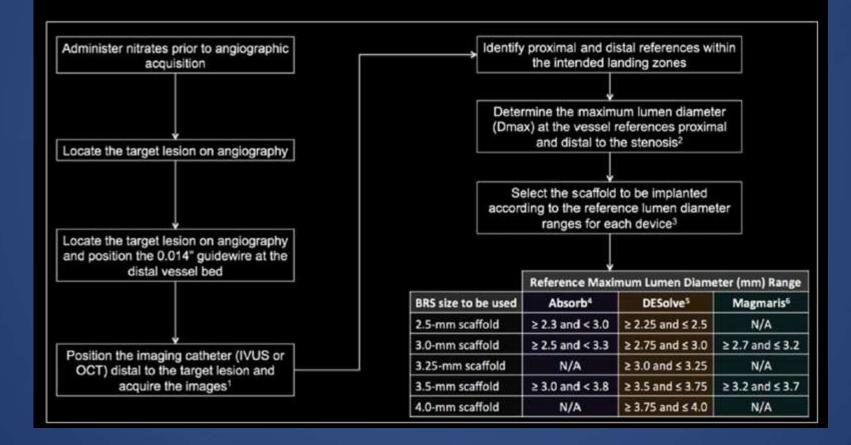
Vessel sizing by IVUS



28th TCTAP 2023

Catheterization and Cardiovascular Interventions 88:S38–S53 (2016)

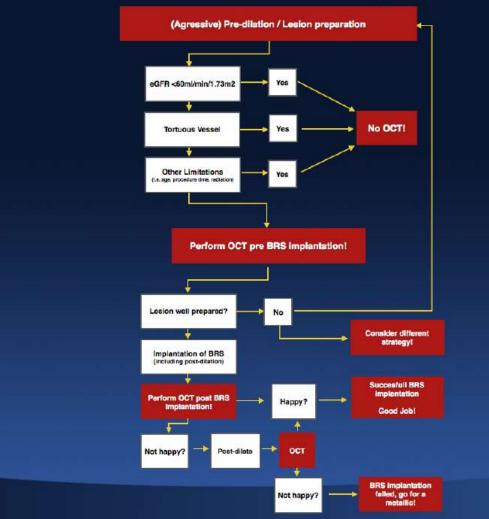
Vessel sizing by OCT



Catheterization and Cardiovascular Interventions 88:S38–S53 (2016)

Role of invasive image

Proposed Algorithm


28th TCTAP 2023

Catheterization and Caridovascular Interventions 2016;88:S38-S53

Use of OCT

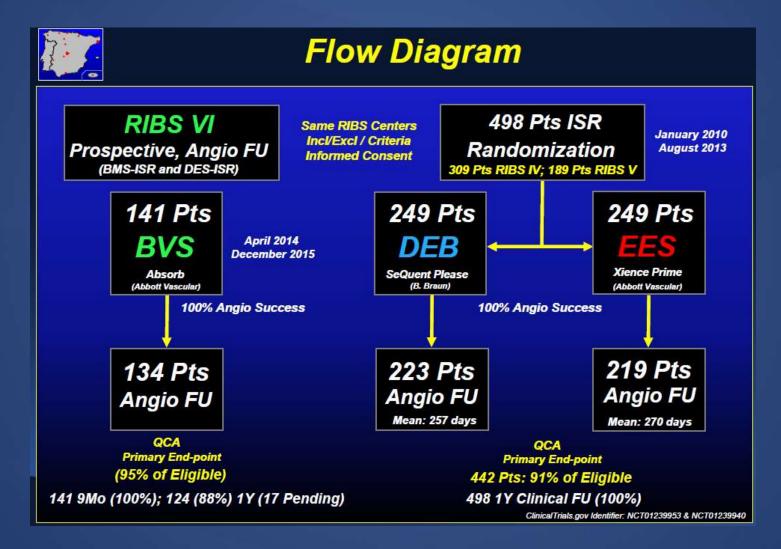
When to use OCT in BRS implantation?

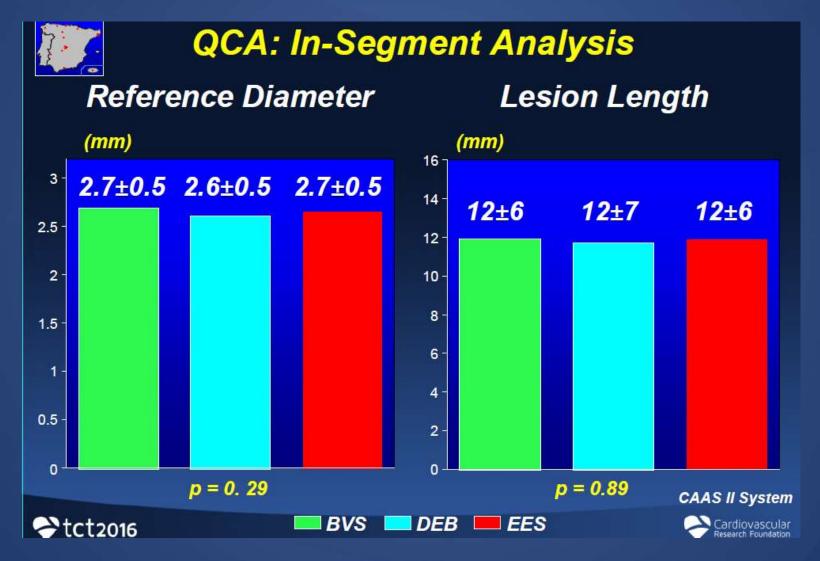
28th TCTAP 2023

D16

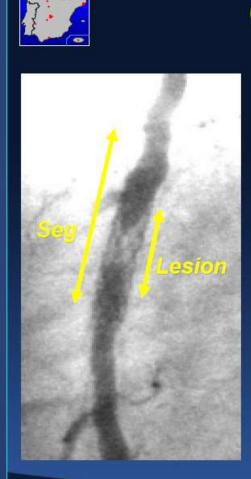
J J Wykrzykowska, TCT 2016

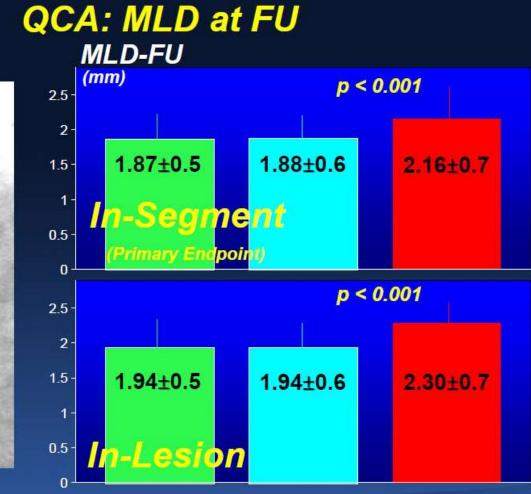
BRS QCA vs. Imaging-guided




*Primary endpoint: target-lesion failure (cardiac death, TV-MI, or ID-TLR) at 1 year

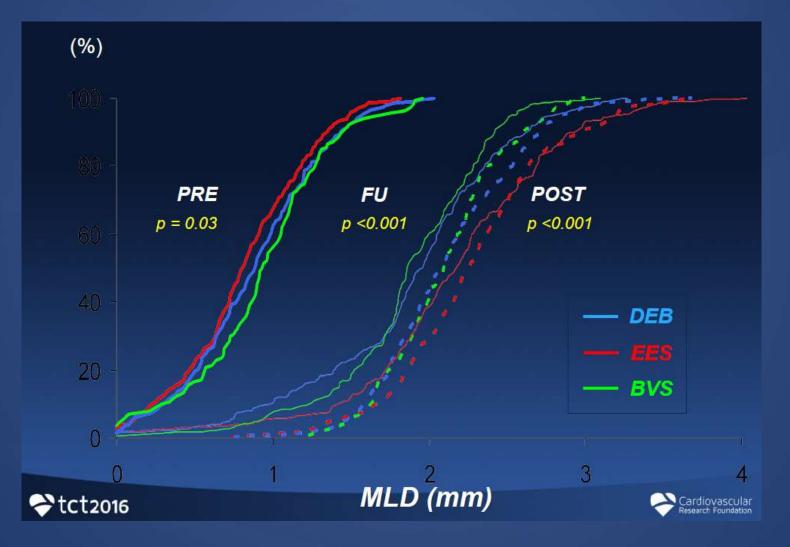
BRS for ISR lesions: *RIBS VI*



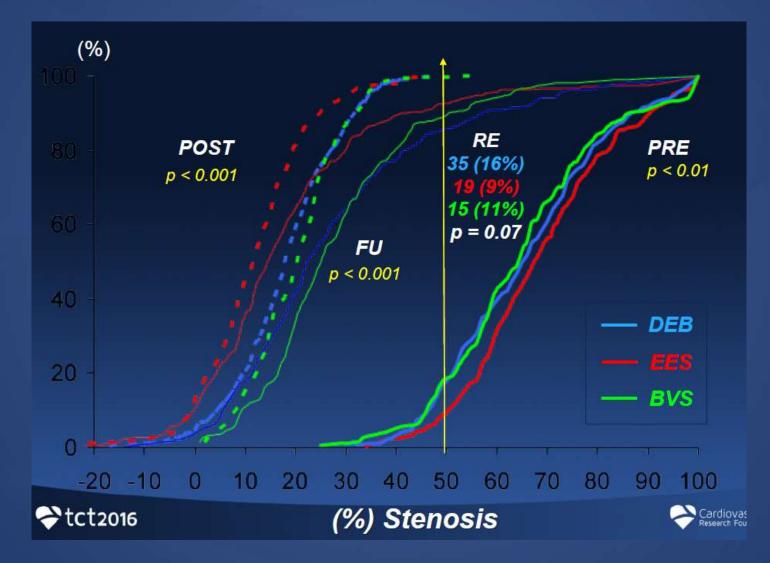


1023 TCTAP 2023

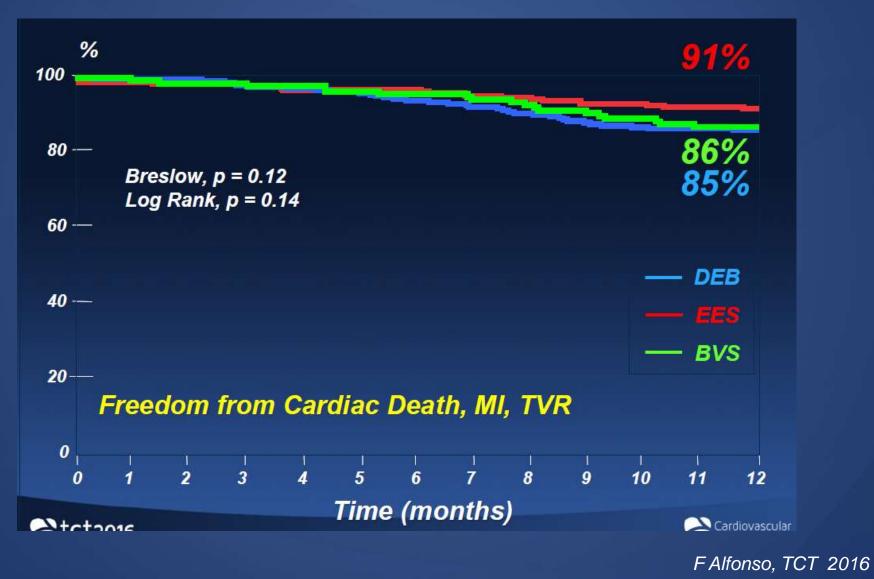
FAlfonso, TCT 2016

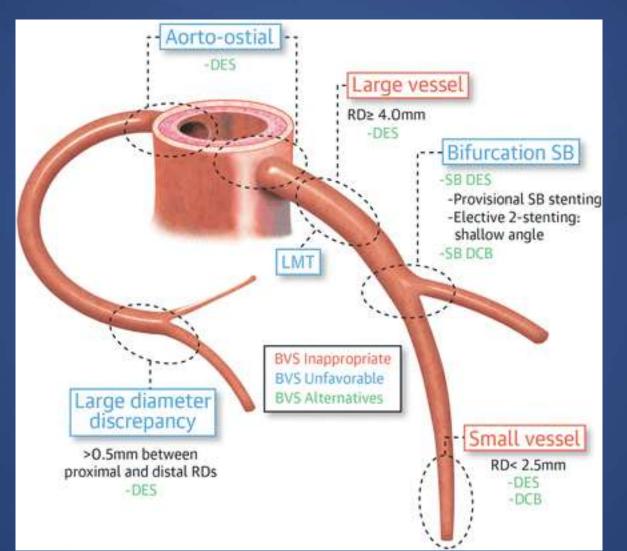


28th TCTAP 2023



FAlfonso, TCT 2016

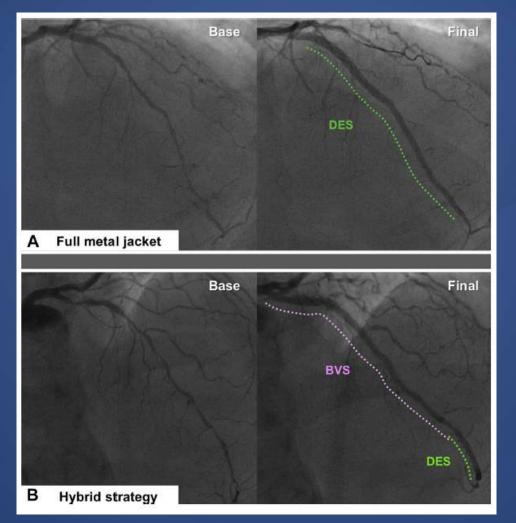




CVRF

28th TCTAP 202

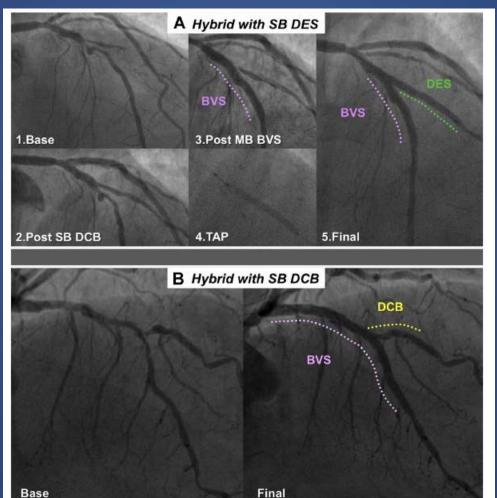
BRS Hybrid technique



J Am Coll Cardiol Intv 2017;10:539–47

BVS Hybrid technique

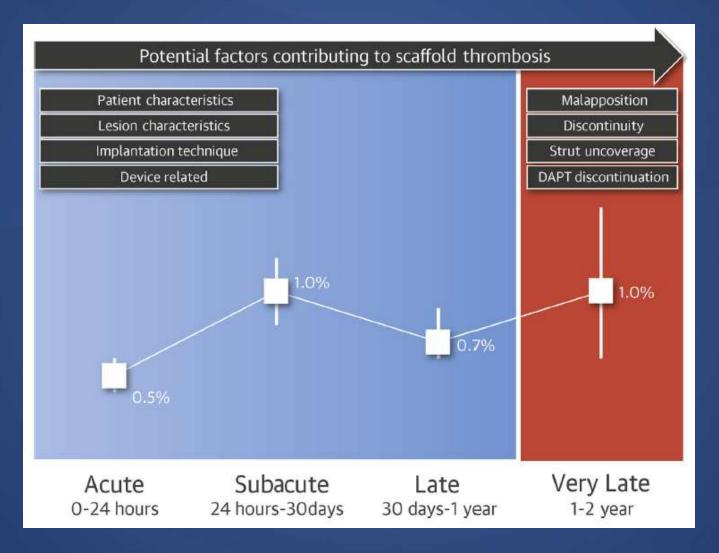
Involving long lesion


28th TCTAP 2023

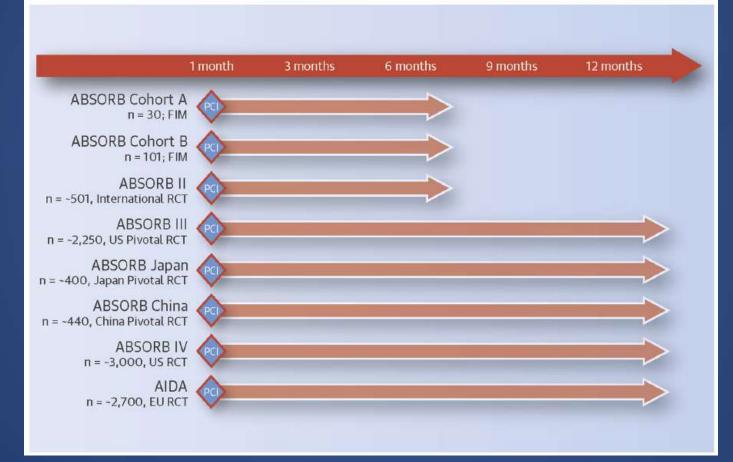
J Am Coll Cardiol Intv 2017;10:539–47


BVS Hybrid technique

Bifurcation Lesion



Capodanno, D. et al. J Am Coll Cardiol Intv. 2017;10(5):425-37.

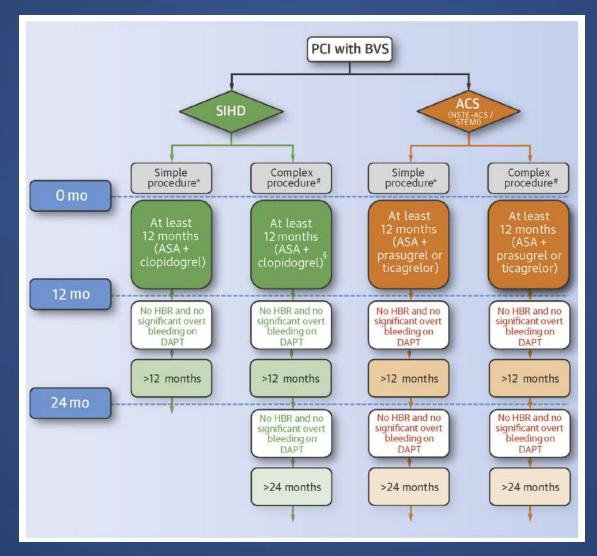


J Am Coll Cardiol Intv 2017;10:425–37

Minimum Dual-Antiplatelet Therapy duration

J Am Coll Cardiol Intv 2017;10:425–37

Very late Scaffold thrombosis


Event rates and Adherence to DAPT

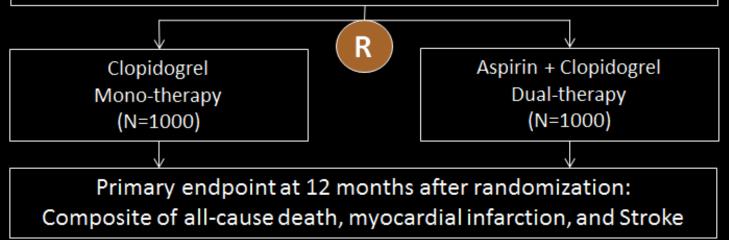
	ABSORB II (23,25,43)		ABSORB CHINA (14)		ABSORB JAPAN (13,24)		ABSORB III (15)	
	BVS	EES	BVS	EES	BVS	EES	BVS	EES
Patients	335	166	241	239	266	134	1322	686
On P2Y ₁₂ inhibitors								
1-yr follow-up	83.0%	83.0%	98.7%	99.2%	97.0%	97.3%	94.4%	95.0%
2-yr follow-up	36.2%	34.3%	NR	NR	52.3%	50.7%		: :
3-yr follow-up	31.0%	30.0%		1999 - 1999 -	19 <u>17 1</u>	1755 1755	233	
Definite or probable device	thrombosis							
1-yr follow-up	0.9%	0.0%	0.4%	0.0%	1.5%	1.5%	1.5%	0.7%
2-yr follow-up	1.5%	0.0%	0.8%	0.0%	3.1%	1.5%		-
3-yr follow-up	2.8%	0.0%	1	-	1	1000	1000	-
ARR 1-2 yr follow-up	+0.6%	0.0%	+0.4%	0.0%	+1.6%	0.0%	-	-
ARR 2-3 yr follow-up	+1.3%	0.0%	=		5 	1	:	-

J Am Coll Cardiol Intv 2017;10:425-37

Antiplatelet therapy for BVS

28th TCTAP 2023

J Am Coll Cardiol Intv 2017;10:425–37



BVS How Long DAPT?

Optimal Duration of Antiplatelet Therapy after Bioresorbable Vascular Scaffold Implantation to Reduce Late Coronary Arterial Thrombotic Events

BVS-LATE Trial

Patients on dual antiplatelet therapy without death, MI, or any revascularization During at least the first 12 months after Bioresorvable Vascular Scaffold implantation

Unresolved Mechanical Issues of BVS

- Complex lesions; calcified or tortuous, long lesion, bifurcation, left main
- Stretchability and fracture
- Overlapping
- Side branch
- Relatively high late loss

Appropriate Use of Absorb in Current Practice

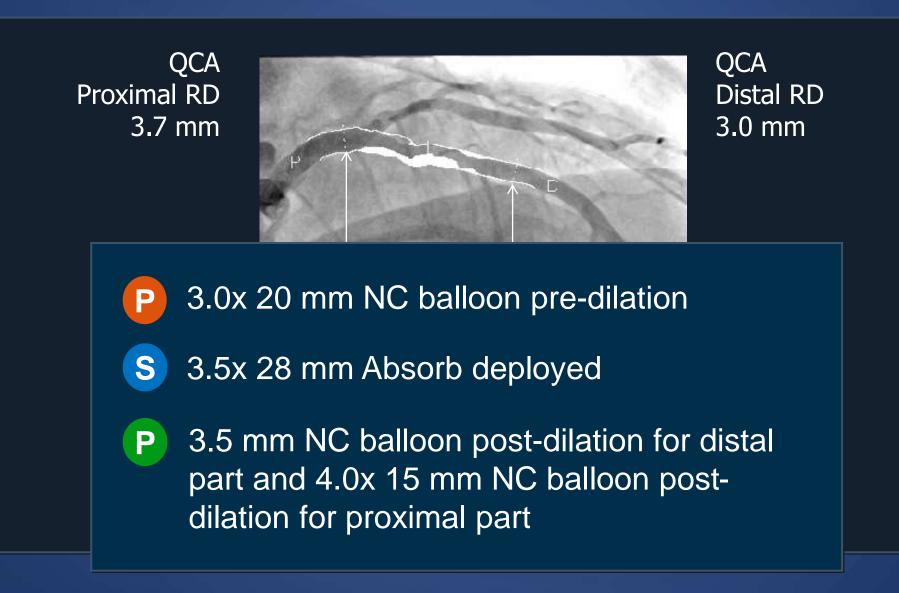
Appropriate

Big Vessel >2.5 mm Young Age <70 years Diabetes STEMI Multi-vessel Disease Long Lesion Bifurcation (Provisional) CTO

Not Yet

Bifurcation (2 stents) Severe Calcification ISR

What do I need to Know to Use the Absorb Scaffold Appropriately?


 Is Imaging guided BRS implantation mandatory ?
 What are the early results in complex lesions compared to those of 2nd Generation DES ?
 Is one year DAPT enough ?

4. Are the long term results really better with Absorb?

How to Do QCA guided Absorb?

How to Do IVUS guided Absorb ? Exactly Same Procedure !

Ρ

Ρ

QCA Distal RD 3.0 mm IVUS RD 3.5 mm

3.0x 20 mm NC balloon pre-dilation

S 3.5x 28 mm Absorb deployed

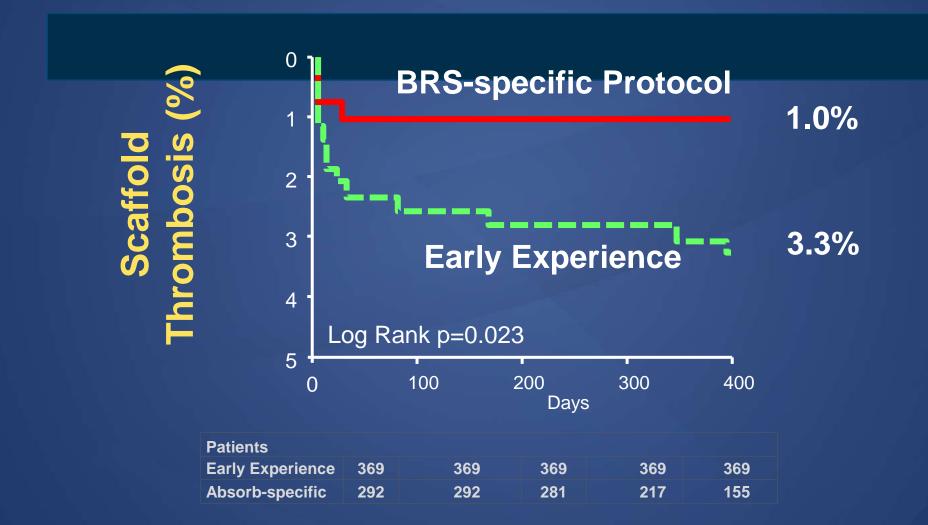
3.5 mm NC balloon post-dilation for distal part and 4.0x 15 mm NC balloon postdilation for proximal part

Increased Risk of ST

Definite or Probable Scaffold Thrombosis

	BVS		DES			Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	É	M-H, Rand	om, 95% Cl	
1.8.1 RCT										
ABSORB II	3	329	0	164	4.9%	3.53 [0.18, 68.68]			•	_
EVERBIO II	1	78	0	160	4.2%	6.21 [0.25, 154.27]				-
Subtotal (95% CI)		407		324	9.1%	4.58 [0.52, 40.51]		_		-
Total events	4		0							
Heterogeneity: Tau ² =	0.00; Chi*	= 0.07,	df = 1 (P	= 0.80); 1* = 0%					
Test for overall effect:	Z = 1.37 (F	9 = 0,17	n i							
1.8.2 Non-RCT										
ABSORB EXTEND	8	812	2	812	17.9%	4.03 [0.85, 19.04]			— •—	
BVS EXAMINATION	7	290	4	290	28.1%	1.77 [0.51, 6.11]				
BVS-RAI	3	122	6	441	22.0%	1.83 [0.45, 7.42]				
Costopoulos et al	0	92	0	92		Not estimable				
Gori et al	4	150	0 3 0	103	18.7%	0.91 [0.20, 4.17]				
Mattesini et al	0	35		31		Not estimable				
PRAGUE-19	1	40	0	57	4.1%	4.37 [0.17, 109.97]				
Subtotal (95% CI)		1541		1826	90.9%	1.91 [0.96, 3.80]			•	
Total events	23		15							
Heterogeneity: Tau ² =	0.00; Chi#	= 2.08,	df = 4 (P	= 0.72); I [#] = 0%					
Test for overall effect:	Z = 1.84 (F	P = 0.07	7)							
Total (95% CI)		1948		2150	100.0%	2.06 [1.07, 3.98]			•	
Total events	27		15							
Heterogeneity: Tau ² =	0.00; Chi*	= 2.72.	df = 6 (P	= 0.84); 12 = 0%		-	1		
Test for overall effect .	Contraction of the second				0		0.01	0.1 Favours BVS	1 10 Favours DES	10
Test for subgroup diffe				(P = 0.	45), 2 = 0	%		Pavours BVS	Pavours DES	

28th TCTAP 2023



BVS Thrombosis Reduced with Improved Technique !

Puricel, S. et I. J Am Coll Cardiol. 2016; 67(8):921–31

Recommended Technique BVS Specific Protocol

Pre-dilation with noncompliant balloon, 1:1 with the RVD.

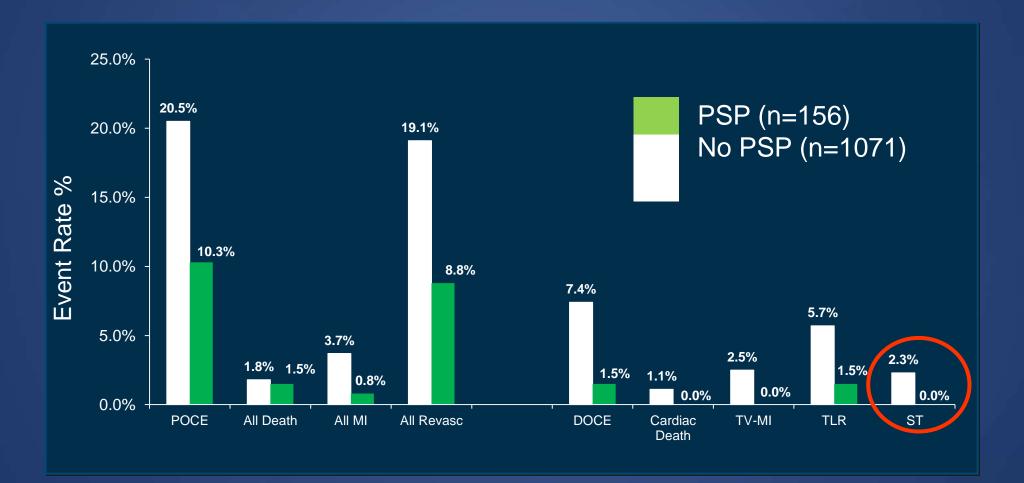
S Sizing Appropriately

BVS of the same size as the RVD at 10 to 12 atm.

P Post-Dilation

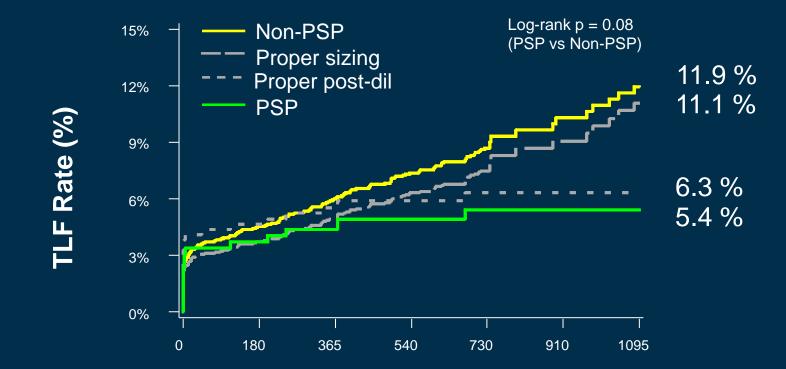
Post-dilation with noncompliant balloon with a maximum of 0.5mm larger at 14 to 16 atm.

Puricel, S. et I. J Am Coll Cardiol. 2016; 67(8):921–31


PSP Use by Trial (As-Treated Population)

EXTEND ABSORB-II ABSORB-Japan ABSORB-China ABSORB-III 108/772 21/324 35/258 32/237 96/1224 (14.0%) (6.5%) (13.6%) (13.5%) (7.8%)

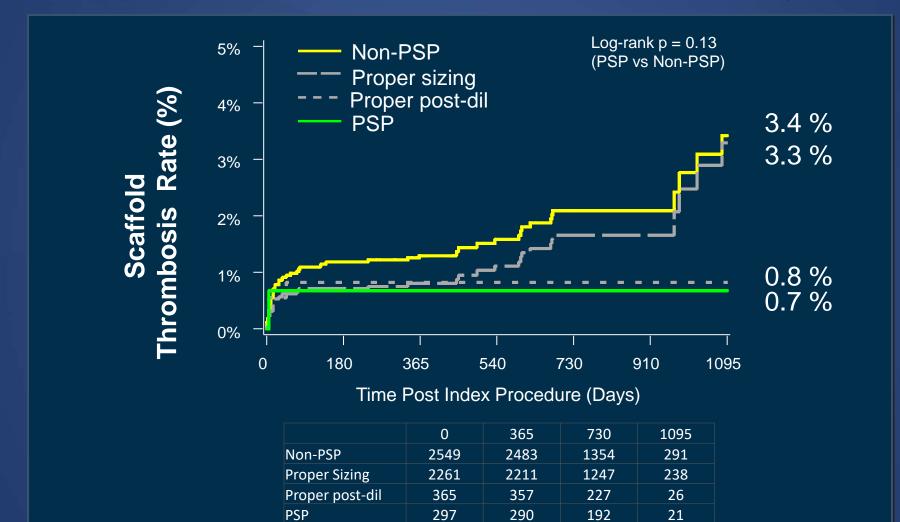
Significant Improvement of Outcomes In GHOST-EU At 1 Year *With Completed PSP*



TCTAP 2023

Brugaletta, S., GHOST-EU PSP Analysis, TCT 2016

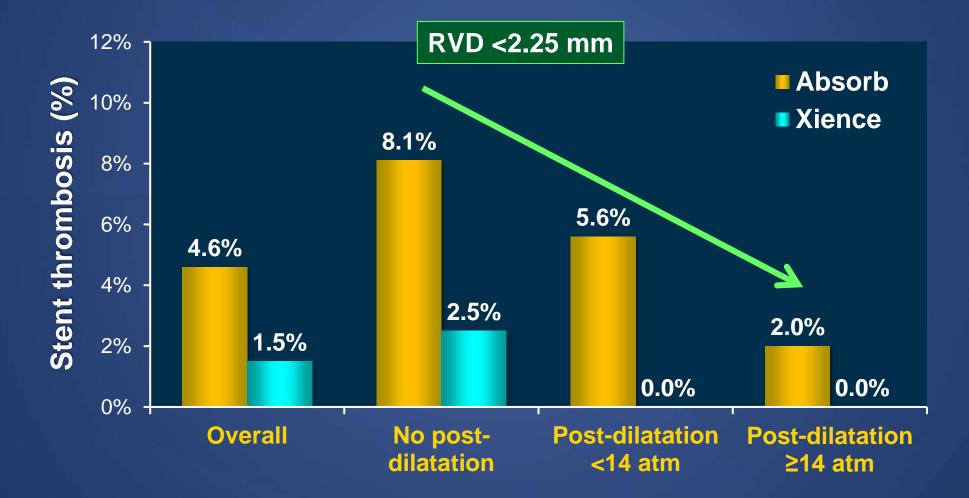
PSP Analysis - *TLF At 3-Years* (Absorb Patients, As-Treated Population)


Time Post Index Procedure (Days)

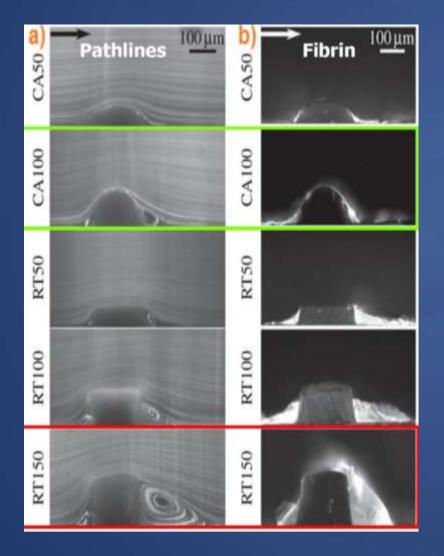
	0	365	730	1095
Non-PSP	2549	2375	1289	268
Proper Sizing	2261	2125	1195	223
Proper post-dil	365	341	219	24
PSP	297	280	186	20

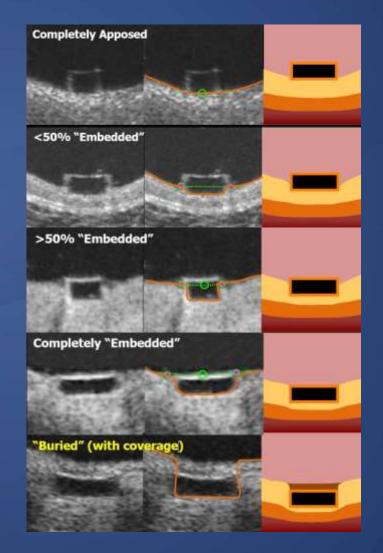
28th TCTAP 2023 0-365 days population: A-EXTEND, A-II, A-Japan, A-China, A-III 366-730 days population: A-EXTEND, A-II, A-Japan, A-China 731-1095 days population: A-II

PSP Analysis – Def/Prob ST At 3-Years (Absorb Patients, As-Treated Population)

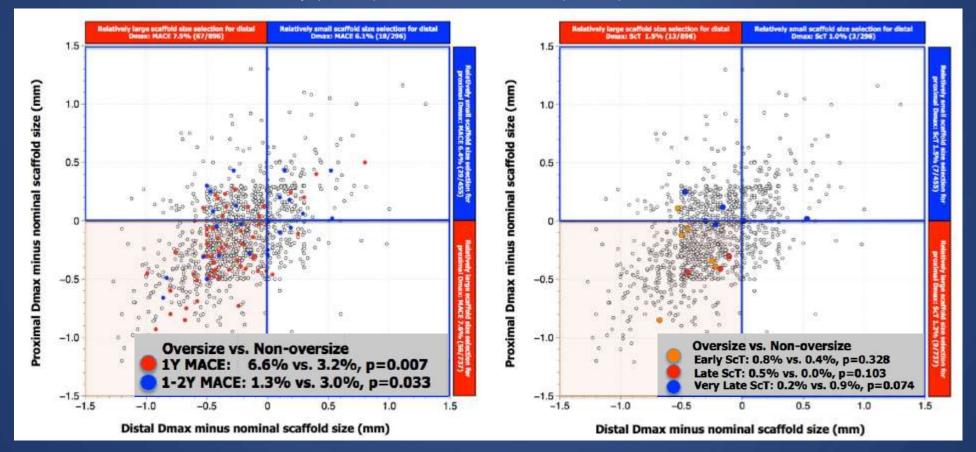


0-365 days population: A-EXTEND, A-II, A-Japan, A-China, A-III 366-730 days population: A-EXTEND, A-II, A-Japan, A-China 731-1095 days population: A-II




1-Year ST in Very Small Vessels, ABSORB 3 Impact of Post-Dilatation and Pressure

Why is the high pressure post-dilatation so important? Embedding of struts?


Jiménez JM, J R Soc Interface 2014, Serruys P, JIM 2016

TCTAP 2023

Small vessel size issue

 A total of 1248 patients received Absorb scaffolds in the ABSORB Cohort B study (n=101), ABSORB EXTEND study (n=812), and ABSORB II trial (n=335)

TCTAP 2023

Serruys P, TCT 2016

QCA Guided

IVUS Guided

Pre-dilation with NC balloon, 1:1 matched QCA RVD

Pre-dilation with NC balloon, 1:1 matched distal RVD

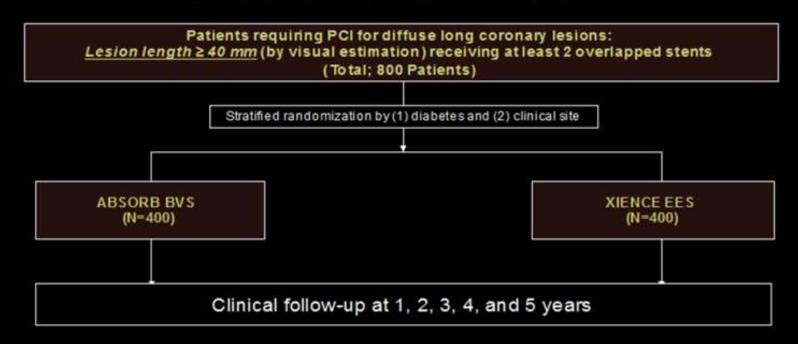
S Sizing

Absorb, 1:1 matched proximal QCA RVD

Absorb, 1:1 matched distal RVD

P Post-Dilatation Post-dilation with NC balloon, 0.5 mm larger size (but \leq +0.5mm, >14atm). *IVUS guided Post-dilation* with NC balloon

BVS QCA vs. Imaging-guided

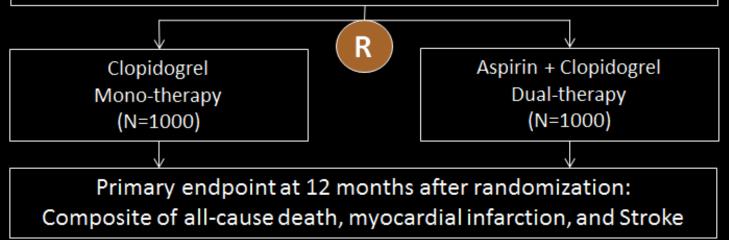

*Primary endpoint: target-lesion failure (cardiac death, TV-MI, or ID-TLR) at 1 year

BVS For Long Lesion (240mm)

Everolimus-Eluting Bioresorbable Scaffolds versus Everolimus-Eluting Metallic Stents for Diffuse Long Coronary Artery Disease

ABSORB-LONG Trial

*Primary endpoint target-lesion failure (composite of cardiac death, TV-MI, or ID-TLR) at 1 year

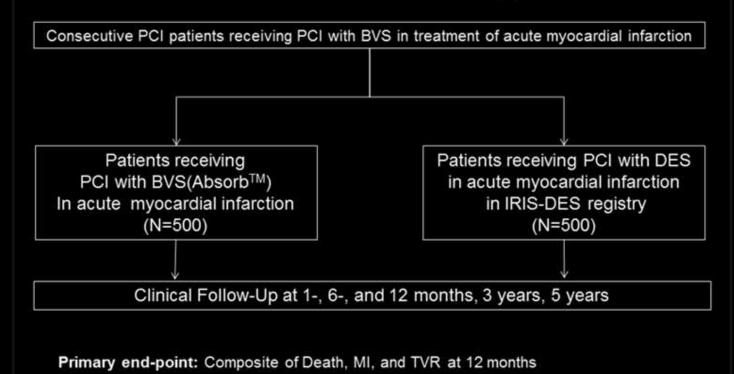


BVS How Long DAPT?

Optimal Duration of Antiplatelet Therapy after Bioresorbable Vascular Scaffold Implantation to Reduce Late Coronary Arterial Thrombotic Events

BVS-LATE Trial

Patients on dual antiplatelet therapy without death, MI, or any revascularization During at least the first 12 months after Bioresorvable Vascular Scaffold implantation

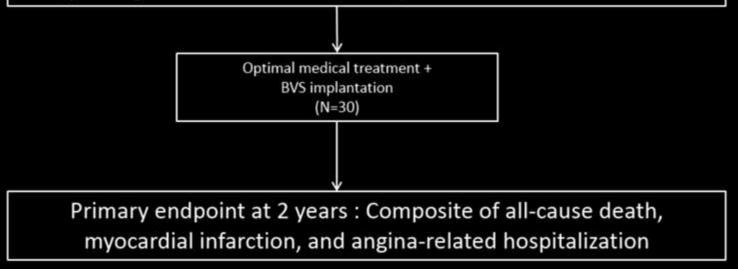


BVS for AMI patients

Evaluation of effectiveness and safety of BVS in Routine Clinical Practice

IRIS- BVS AMI Registry

TCTAP 2023



BVS for Variant Angina

BVS Implantation in Patients with Variant Angina and MODerate coronary artery disease: Pilot study BIVA-MOD: Pilot study

Patients with Variant Angina with Moderate coronary artery disease

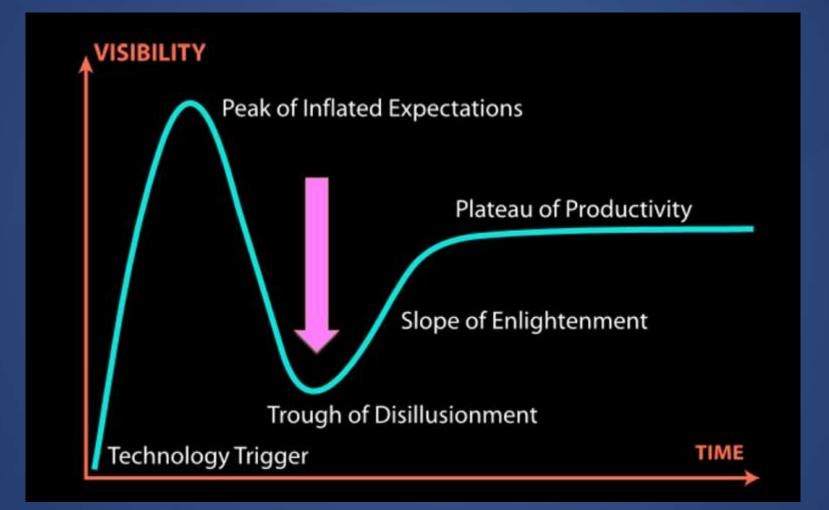
- Vasospastic angina diagnosed by provocation test including ergonovine provocation coronary angiography or ergonovine echocardiogram
 - No-ischemia producing moderate coronary artery disease(stenosis>50%, FFR>0.8)
- 3) No history of previous coronary revascularization
- 4) No organic heart disease associated with myocardial ischemia or sudden cardiac death

EVS for Vulnerable Plaque PREVENT Trial

Any Epicardial Coronary Stenosis with <u>FFR ≥0.80</u> and with <u>Two</u> of the following

- 1. IVUS MLA ≤ 4.0 mm²
- 2. IVUS Plaque Burden >70%
- **3.** Lipid-Rich Plaque on NIRS (_{max}LCBI_{4mm}>315)
- 4. TCFA defined by OCT or VH-IVUS

OCT sub-study/ NIRS sub-study, (300 patients in each arm at 2 years)


Limitation of first generation BRS

- Larger catheter profile, reduced deliverability
- Thicker and wider struts than metallic DES
- Narrow expansion limits with risk of acute fracture
- Issues with scaffold visibility, overlap
- Greater recoil in some lesion
- Active bioresorption with risk of very late intraluminal scaffold dismantling

Hype Cycle for Emerging Technologies

28th TCTAP 2023

Strut Thickness in Perspective

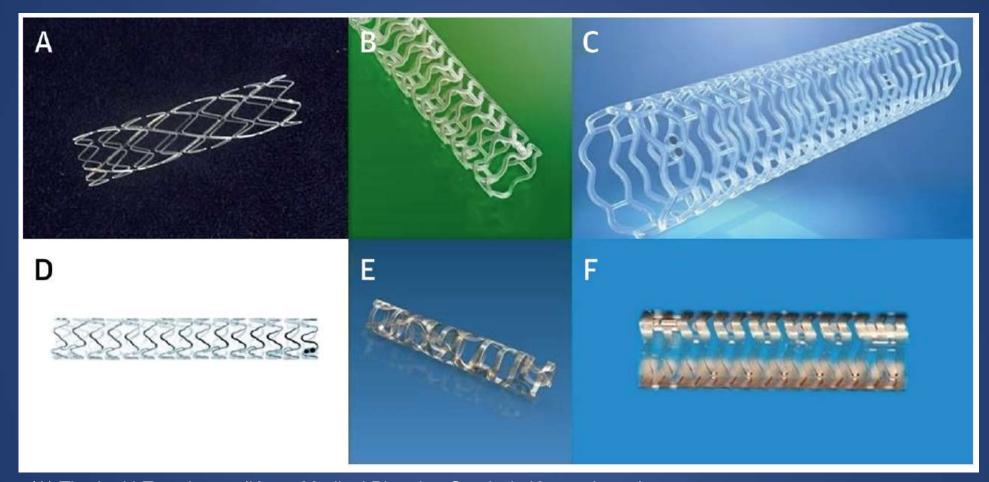
In vivo Thrombogenicity Strut Thickness in Perspective Joner M, Presented at EuroPCR 2014 μm 250 164±22 μm P<0.001 84±16 μm Absorb 00 o 💻 💿 • Synergy 50-BRS **New-generation DES**

Thrombus formation assessed by immunofluorescence staining for platelet marker CD61 after 1 hour in ex-vivo pig AV shunt model

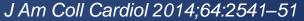
Jochen Wohrle, TCT2017

Structure Summary

As of today, at least 32 devices have been developed !



1023 TCTAP 2023


New BRSs

Basic material		MAGNESIUM		OTHER			
Scaffold name	AMS	DREAMS 1.0	DREAMS 2.0	REVA BRS	REVA ReZolve	Ideal BioStent	
Manufacturer	Biotronik, Berlin, Germany	Biotronik, Berlin, Germany	Biotronik, Berlin, Germany	Reva Medical Inc., San Diego, CA, USA	Reva Medical Inc., San Diego, CA, USA	Xenogenics Corp., Canton, MA, USA	
Composition	Magnesium and rare earth metals	Magnesium and rare earth metals	Magnesium and rare earth metals	Desaminotyrosine polycarbonate	Desaminotyrosine polycarbonate	Poly-lactic anhydride containing 2 salicylic acid molecules linked to 1 sebacic acid molecule	
Design of the latest generation	4-crown design	6-crown design	6-crown design	Slide-and-lock ("ratchet")	Slide-and-lock ("ratchet")	Tube with laser-cut voids	
Thickness of strut, μm	165	120	150	204	122	200	
Visualization	Latest g	eneration with radiopaque	markers	Fully radiopaque	Fully radiopaque		
Special feature		e charge that emerges duri s has an antithrombotic fu				Polymer causes less inflammation	
Anti- proliferative drug elution	No	Paclitaxel	Sirolimus	Paclitaxel	Sirolimus	Sirolimus	
Resorption time	2 mos	9-12 mos		2-3 yrs	2-3 yrs	15 mos	
Status	Clinical evaluation	Clinical evaluation	Clinical evaluation	Clinical evaluation; CE trial ongoing	Clinical evaluation; CE trial ongoing	Clinical evaluation, pre- clinical evaluation of the thinner 2nd generation	
Trials (no. in cohort and duration)	PROGRESS AMS 63 patients up to 28 mos	BIOSOLVE-I 46 patients up to 3 yrs	BIOSOLVE- 	FiM 15 mos	RESTORE 26 patients 12 mos	FiM 11 patients 1.5 yrs	

J Am Coll Cardiol 2014;64:2541–51

(A) The Igaki-Tamai stent (Kyoto Medical Planning Co., Ltd., Kyoto, Japan)
(B) The ABSORB Bioresorbable Vascular Scaffold (Abbott Vascular, Santa Clara, California)
(C) The DESolve bioresorbable scaffold (Elixir Medical Corporation, Sunnyvale, California)
(D) The DREAMS magnesium alloy (Biotronik, Berlin, Germany)
(E) The ReZolve 2 BRS (Reva Medical Inc., San Diego, California)
(F) The Ideal BioStent (Xenogenics Corp., Canton, Massachusetts)

Fantom Bioresorbable Scaffold

Fantom® (REVA Medical) Sirolimus-Eluting Bioresorbable Scaffold Desaminotyrosine Polycarbonate

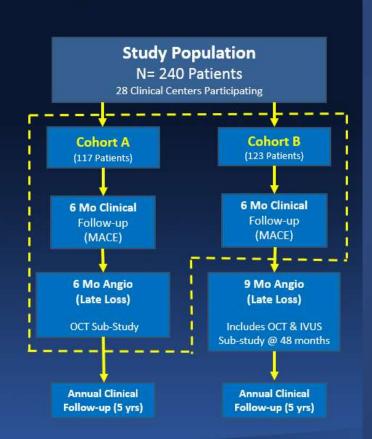
Key Scaffold Features

- Complete scaffold visibility under x-ray
- Single-step continuous inflation
- Clinically significant expansion range
- Good radial strength at 125 μm thickness
- Vasomotion restoration ~1 year (Preclinical)
- No special storage or handling

Visibility

Deliverability

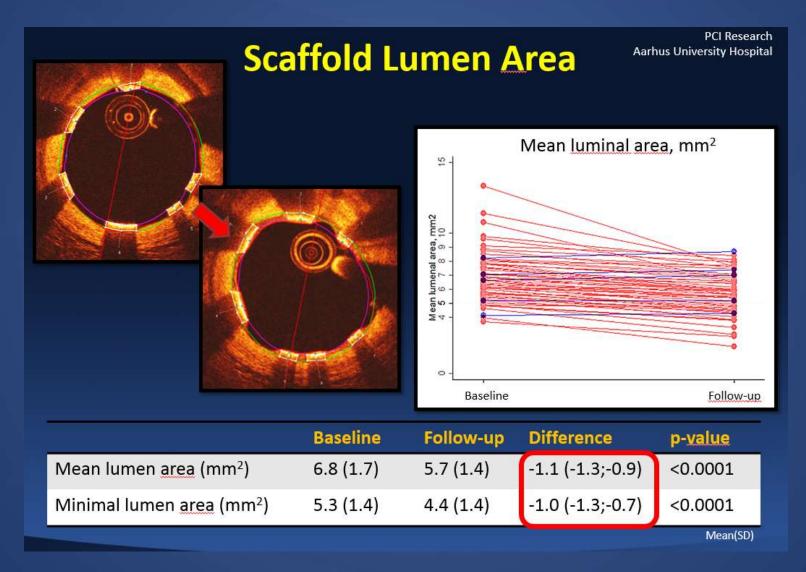
Vessel Patency

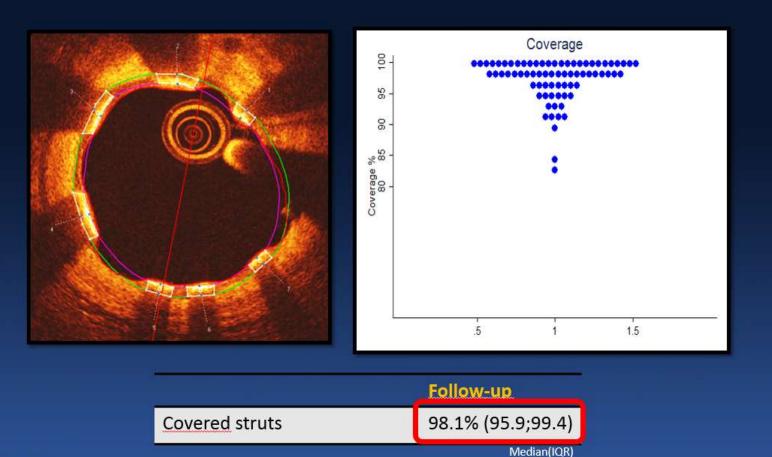


FANTOM II Study Design and Endpoints

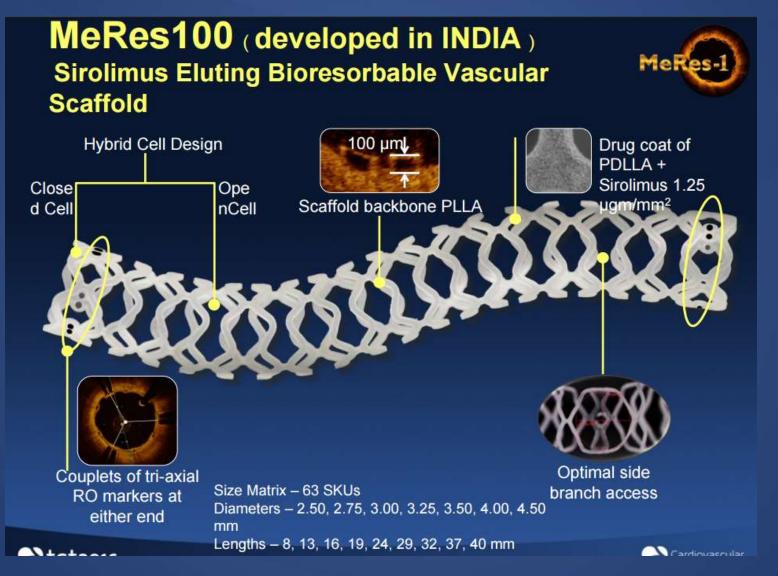
• Study Design

- Safety and Performance Trial
- 2.5mm to 3.5mm vessels
- Lesion length \leq 20mm
- Primary Endpoint
 - MACE & Late Loss at 6 Months
- Secondary Endpoints
 - MACE all time points
 - Late Loss at 9 Months
 - Serial imaging sub-studies
 - Cohort A: 24 months
 - Cohort B: 48 months





PCI Research Aarhus University Hospital


Strut Coverage

TCTAP 2023

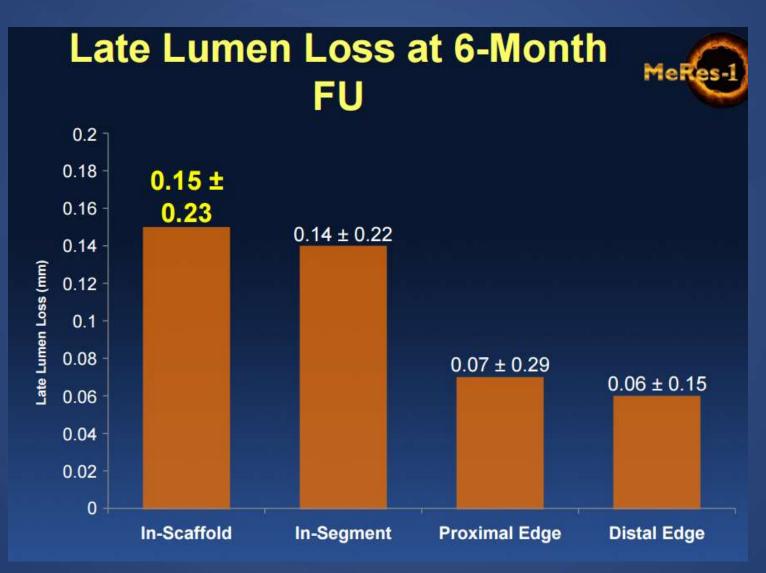
A Seth TCT 2016

MeReS-1

MeRes-1 Study Design

First-in-man Safety and Efficacy in Patients with Single, De -novo Coronary Lesion (in up to 2 vessels) treated by a Single MeRes100 Scaffold up to 24mm length in 108 pts

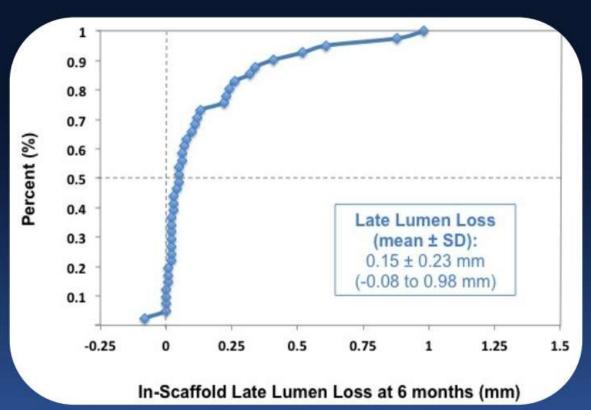
Clinical follow-up					
N = 108	30-days	> 6- month	> 1-year	2-years	3-years
QCA, IVUS, OCT & M	SCT follow-	up I		ľ	
CLINICAL FOLLOW-UP	108	108	108	108	108
ANGIOGRAPHIC FOLLOW-UP	-	36	-	36	
OCT FOLLOW-UP	-	13	-	13	
VUS FOLLOW-UP	-	12	-	12	17
MSCT FOLLOW-UP			12		



A Seth TCT 2016

MeRes-1

MeReS-1


TCTAP 2023

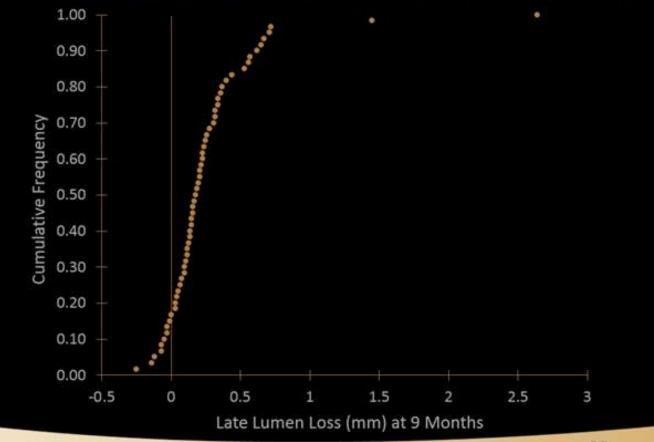
A Seth TCT 2016

CFD Curve for Late Lumen Loss at 6-Months FU

MeRes-

FORTITUDE

1-Year Clinical and Imaging Outcomes of a Novel Ultra High Molecular Weight PLLA Sirolimus-Eluting Coronary BRS: A Prospective Multicenter International Investigation (The FORTITUDE® Study) FORTITUDE Study Design



28th TCTAP 2023

A Colombo TCT 2016

FORTITUDE

Primary Efficacy End Point: Cumulative Frequency Distribution 9-Month In-Scaffold Late Lumen Loss

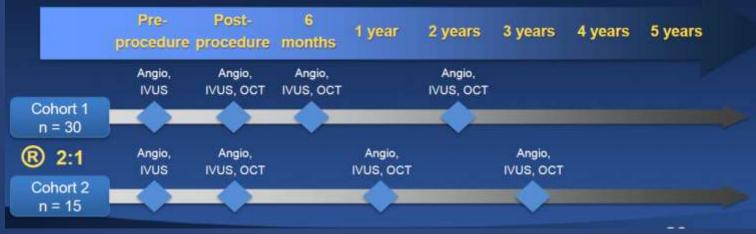
A Colombo TCT 2016

Features of the Firesorb BRS

FUTURE-I (N=45)

Prospective, Single Center, First-in-Man Study

Inclusion: • Age ≥ 18 years


- · Stable and unstable angina, silent ischemia, or OMI
- Single, de novo lesion in native coronary artery with lesion length ≤ 25 mm (can be covered by 1 scaffold) and vessel size between 3.0~3.5 mm

Exclusion:
 AMI within 1 week

 CTO (TIMI 0), left main disease, ostial lesion, multivessel disease, bifurcation (diameter of ostial SB ≥ 2.0 mm or %DS ≥ 40%), and restenotic lesions

Device Size: Diameter: 3.0, 3.25, 3.5 mm; length: 13, 18, 23, 29 mm

Imaging and Clinical Follow-up

28th TCTAP 2023

Angiographic Results in Cohort 1

	Post-Procedure (N=30)	6M F/U (N=29)	Difference (95% CI)	Ρ
Minimal Lumen Diameter, mm				
In-Scaffold	2.67 ± 0.22	2.53 ± 0.24	0.15 (0.11, 0.19)	<0.001
In-Segment	2.44 ± 0.27	2.36 ± 0.30	0.09 (0.03, 0.14)	0.003
Diameter Stenosis, %				
In-Scaffold	10.6 ± 4.7	14.1 ± 5.9	-3.5 (-5.4, -1.6)	0.001
In-Segment	15.4 ± 7.5	16.9 ± 8.7	-1.1 (-4.1, 1.9)	0.45
Acute Gain, mm				
In-Scaffold	1.67 ± 0.42	=	-	=
In-Segment	1.44 ± 0.48	이름	1 6 31	
Acute Recoil, mm	0.13 ± 0.10	12	121	
Late Lumen Loss, mm				
In-Scaffold	∆ n ≇	0.15 ± 0.11		-
In-Segment	N=1	0.09 ± 0.15		7
Binary Restenosis, %		0%		

Clinical Outcomes

	30 Days		6 Months			
	Overall (N=45)	Cohort 1 (N=30)	Cohort 2 (N=15)	Overall (N=45)	Cohort 1 (N=30)	Cohort 2 (N=15)
TLF	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)
PoCE	2.2% (1)	3.3% (1)	0% (0)	2.2% (1)	3.3% (1)	0% (0)
All-Cause Death	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)
Cardiac Death	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)
Non-Cardiac Death	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)
All MI	2.2% (1)	3.3% (1)	0% (0)	2.2% (1)	3.3% (1)	0% (0)
Target Vessel MI	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)
Any Revascularization	2.2% (1)	3.3% (1)	0% (0)	2.2% (1)	3.3% (1)	0% (0)
ID-TVR	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)
ID-TLR	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)
Def/Prob ST	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)	0% (0)

IVUS Results in Cohort 1

	Post-Procedure (N=30)	6M F/U (N=29)	Difference (95% CI)	Р
Cross-Section Level Analysis	1,365	1,227		-
Mean Vessel Area, mm²	16.4 ± 3.49	16.2 ± 3.30	0.4 (-0.1, 1.0)	0.12
Minimal Vessel Area, mm ²	13.6 ± 3.61	13.3 ± 3.21	0.5 (0.2, 0.8)	0.003
Mean Scaffold Area, mm ²	7.87 ± 1.25	7.86 ± 1.25	0.1 (-0.1, 0.2)	0.37
Minimal Scaffold Area, mm ²	6.74 ± 1.17	6.70 ± 1.21	0.1 (-0.1, 0.3)	0.41
Mean Lumen Area, mm ²	7.68 ± 1.21	7.47 ± 1.27	0.3 (0.1, 0.5)	0.01
Minimal Lumen Area, mm ²	6.60 ± 1.15	6.30 ± 1.22	0.4 (0.1, 0.6)	0.005
Lesion Level Analysis	30	29	(1)	÷
Mean Neointimal Hyperplasia, mm ²		0.18 ± 0.22	12	2
In-Scaffold Volumetric Obstruction, %	5.	6.46 ± 2.57		æ
Absolute Late Recoil, mm ²	-	0.07 ± 0.39		÷
Late Recoil, %		0.76 ± 4.86	-	

OCT Results in Cohort 1

	Post- Procedure (N=30)	6M F/U (N=29)	Difference (95% CI)	Ρ
Strut Level Analysis	13,843	14,945	1.52	-
Proportion of Covered Struts, %	8)	98.4%	a	+
Incomplete Strut Apposition, %	0.85%	0.07%	0.82 (0.37, 1.27)	<0.001
Persistent Malapposition, %	 :	0.07%	-	-
Late-Acquired Malapposition, %	(1 <u>2</u>)	0%	12	-
Mean Thickness of Strut Coverage, mm	32 7 3	0.05 ± 0.04	.	-
Cross-Section Level Analysis	1,402	1,372		-
Mean Black Core Area, mm ²	0.13 ± 0.02	0.14 ± 0.03	-0.01 (-0.02, 0.0)	0.01
Lesion Level Analysis	30	29	-	-
Absolute Late Recoil, mm ²	1273	0.18 ± 0.44	1.5	-
Late Recoil, %	7 -	2.01 ± 5.20	- 21	-
Healing Score	0.77	3.14 ± 3.43		:#:

^{28 ф} ТСТАР 2023

XINSORB

Balloon	Bioresorbabl e Scaffold	Bioresorbabl e Coating	Sirolimus
<i>expanding</i> • <i>Excellent</i> <i>deliverability</i>	 Polylactide (PLLA) Naturally resorbed, fully metabolized 160 μm of thickness 	 Polylactide (PDLLA) coating Fully biodegradabl e 	 12 μg/mm 80% of drugs eluted in 28 days ex vivo

XINSORB

1-year QCA Results (per lesion)

	XINSORB (N=169)	TIVOLI® (N=167)	P-Value
RVD (mm) prox-	3.02 ± 0.47	3.02 ± 0.56	0.99
in-device	2.88 ± 0.46	2.88 ± 0.53	0.91
distal-	2.71 ± 0.50	2.64 ± 0.52	0.22
MLD (mm) prox-	2.82 ± 0.49	2.70 ± 0.62	0.06
in-device	2.42 ± 0.46	2.35 ± 0.51	0.16
distal-	2.56 ± 0.51	2.46 ± 0.55	0.07
DS (%) prox-	6.45 ± 8.35		
in-device	15.88±9.8		
distal-			
In-device late luminal loss (mm)			
Peri-device late luminal loss (mm)			

TCTAP 2023

Junbo Ge, TCT 201

XINSORB

1-year Clinical Outcomes (per patient)

	XINSORB (N=191)	TIVOLI® (N=187)	P-Value
PoCE	4.7% (9)	7.0% (13)	0.35
DoCE (TLF)	1.6% (3)	4.8% (9)	0.07
All-cause death	1.0% (2)	0	0.50
- Cardiac death	0.5% (1)	0	NA
All MI*	0.5% (1)	1.1% (2)	0.62
- TV-MI*	0.5% (1)	0.5% (1)	1.0
All revascularization	3.7% (7)	6.4% (12)	0.22
- ID-TLR	1.0% (2)	4.9% (9)	0.25

Junbo Ge, TCT 2017

