

Transcatheter Aortic Valve Replacement

ACC/AHA TAVR Guidelines 2020

2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease

A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines

ESC TAVR Guidelines 2021

2021 ESC/EACTS Guidelines for the management of valvular heart disease

Aortic Root Anatomy

Sinotubular junction Aortic leaflets Aortic Annulus AVA-coronary height

RC = Right coronary cusp; NC = Non-coronary cusp; LC = Left coronary cusp

Valve size should be based on the largest diameter of the AV

annulus

Anatomy of Aortic Valvular Complex

Aortic Root thus composed of 3 rings and one crown-like ring

Access Routes For TAVR

Femoral Artery Anatomy

Trend of TAVR

Mortality Across TAVR Studies

All-Cause Mortality at 30 Days Edwards SAPIEN Valves

TCTAP 2023

All Cause Mortality @ 1 Year

Metaanalysis From Randomized Trials Survival Benefit In TAVR

All-cause mortality

28th TCTAP 2023

Siontis GC et al Eur Heart J European Heart Journal (2019) 40, 3143–3153

Metaanalysis From Randomized Trials

Siontis GC et al Eur Heart J European Heart Journal (2019) 40, 3143–3153

Metaanalysis From Randomized Trials Analyses for the secondary outcomes

Trial					HR (95% CI)	P
Cardiovascular death		I				
PARTNER 1A					1.14 (0.83 - 1.57)	
US CoreValve high risk			-		0.83 (0.60 - 1.15)	
NOTION	-				0.71 (0.31 - 1.63)	
PARTNER 2A		_	-		0.94 (0.72 - 1.23)	
SURTAVI					0.96 (0.66 - 1.40)	
PARTNER 3		-	-		0.40 (0.12 - 1.30)	
Evolut low risk	_	-			0.65 (0.30 - 1.42)	
Overall (Heterogeneity $\tau^2 < 0.001$, p=0.507)		9			0.93 (0.80 - 1.08)	0.319
Myocardial infarction		-				
PARTNER 1A		+			0.11 (0.01 - 2.07)	
US CoreValve high risk	-	+			0.92 (0.32 - 2.58)	
NOTION					1.06 (0.38 - 2.92)	
PARTNER 2A					0.90 (0.57 - 1.43)	
SURTAVI			-		1.27 (0.63 - 2.57)	
PARTNER 3					0.54 (0.20 - 1.49)	
Evolut low risk			<u> </u>		1.06 (0.44 - 2.56)	
Overall (Heterogeneity r ² <0.001, p=0.608)			>		0.92 (0.68 - 1.25)	0.603
Acute kidney injury						
PARTNER 1A		+			0.96 (0.53 - 1.74)	
US CoreValve high risk					0.41 (0.26 - 0.64)	
NOTION				-	0.61 (0.10 - 3.67)	
PARTNER 2A					0.64 (0.42 - 0.96)	
Evolut low risk					0.32 (0.14 - 0.76)	
Overall (Heterogeneity r ² =0.074, p=0.131)		\diamond			0.56 (0.38 - 0.81)	0.002
New-onset atrial fibrillation						
PARTNER 1A					0.71 (0.49 - 1.02)	
US CoreValve high risk					0.54 (0.42 - 0.69)	
NOTION					0.28 (0.18 - 0.43)	
PARTNER 2A	1				0.41 (0.33 - 0.50)	
PARTNER 3					0.13 (0.09 - 0.20)	
Evolut low risk	-8-				0.26 (0.21 - 0.32)	
Overall (Heterogeneity r ² =0.228, p<0.001)	<	>			0.34 (0.23 - 0.51)	<0.001
- I	1	1 1	1	1	1	
0.1	0.2	0.5 1	2	5	10	
	Eavoure T	Δ\/I	Favours S	AVR		

Siontis GC et al Eur Heart J European Heart Journal (2019) 40, 3143–3153

TCTAP 202

Metaanalysis From Randomized Trials Analyses for the secondary outcomes

Siontis GC et al Eur Heart J European Heart Journal (2019) 40, 3143–3153

Functional Classification of Symptomatic Severe AS Patients

Prohibitive Surgical Risk, *Inoperable*

 Score
 Proportion

 High Risk
 > 8%
 ~10%

 Intermediate Risk
 4~8%
 10~25%

 Low Risk
 < 4%</th>
 ~70%

STS

RCT of TAVR: Chain From High to Low-Risk

Trial Name	STS Score	Age
Inoperable Population		
PARTNER IB Trial	11.6	83
High Risk Population		
PARTNER IA Trial	11.8	84
CoreValve US Pivotal Trial	7.4	83
Intermediate Risk Population		
PARTNER IIA Trial	5.8	82
SURTAVI	4.4	80
Low Risk Population		
NOTION Trial	3.0	79
PARTNER III	1.9	74
Evolut Low Risk Trial	1.9	74

Innovation in TAVR Remaining Clinical Needs

- Bicuspid AV disease
- AS + concomitant disease (CAD, MR, AF)
- Severe asymptomatic AS
- Moderate AS + CHD
- Durability concerns (including valve leaflet thrombosis) and coronary obstruction/access
- Adjunct Pharmacotherapy
- High-risk severe AR

Edwards SAPIEN balloon-expandable THV

SAPIEN valve trials PARTNER trial

PARTNER trial : Inoperable 3 year follow-up

PARTNER trial : High Risk 3 year follow-up All-Cause Mortality (IIT)

28th TCTAP 2023 Vinod H. Thourani et al. ACC 2013

PARTNER trial : High Risk 3 year follow-up Stroke (IIT)

28th TCTAP 2023 Vinod H. Thourani et al. ACC 2013

CVRF

PARTNER trial : High Risk

3 year follow-up All-Cause Mortality or Strokes (IIT)

Vinod H. Thourani et al. ACC 2013

5 Years Outcomes of PARTNER | trial All-Cause Mortality (ITT)

28th TCTAP 2023

PARTNER 2 trial Cohort A TAVR (SAPIEN XT) VS AVR Intermediate risk

Martin B. Leon et al NEJM 2016

PARTNER 2 trial : Intermediate risk

Martin B. Leon et al NEJM 2016

28th TCTAP 2023

Martin B. Leon et al NEJM 2016

28th TCTAP 2023

PARTNER 3

Transcatheter or Surgical Aortic Valve Replacement in Low Risk Patients with Aortic Stenosis

PARTNER 3 trial Primary Endpoint

TCTAP 20

PARTNER 3 trial All-Cause Mortality

PARTNER 3 trial All Stroke

PARTNER 3 trial Death or Disabling Stroke

PARTNER 3 trial Rehospitalization

TCTAP 202

PARTNER 3 trial Primary Endpoint – Subgroup Analysis

Subgroup	TAVR	Surgery		Diff [95% CI]	P-value*
Overall	8.5	15.1		-6.6 [-10.8, -2.5]	
Age					
≤ 74 (n=516)	10.6	14.9		-4.3 [-10.1, 1.5]	0.24
> 74 (n=434)	5.8	15.3		-9.5 [-15.3, -3.7]	0.21
Sex					
Female (n=292)	8.1	18.5		-10.4 [-18.3, -2.5]	0.07
Male (n=658)	8.7	13.8		-5.1 [-9.9, -0.3]	0.27
STS Score					
≤ 1.8 (n=464)	9.1	15.7		-6.7 [-12.6, -0.7]	
> 1.8 (n=486)	8.0	14.5		-6.5 [-12.2, -0.8]	0.98
LV Ejection Fraction					
≤ 65 (n=384)	9.6	17.2	———— ——	-7.6 [-14.5, -0.7]	
> 65 (n=524)	8.0	12.4		-4.4 [-9.6, 0.7]	0.48
NYHA Class					
I/II (n=687)	6.8	14.5		-7.8 [-12.4, -3.2]	
III/IV (n=263)	12.3	16.9		-4.7 [-13.5, 4.1]	0.54
Atrial Fibrillation					
No (n=786)	7.9	14.0		-6.1 [-10.5, -1.7]	-
Yes (n=163)	11.6	20.3		-8.7 [-19.9, 2.5]	0.67
KCCO Overall Summary Score					
≤ 70 (n=407)	10.5	19.9		-9.4 [-16.5, -2.4]	2.24
> 70 (n=536)	6.5	11.2		-4.6 [-9.4, 0.2]	0.27
Event rates are KM estimates ((%)		200/ 100/ 0 100/	000/	
* P value is for interaction	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-20%-10% 0 10%	20%	
P-value is for interaction		÷	TAVK Better Surger	ry Better ->	

PARTNER 3 trial Pre-specified Secondary Endpoints

Subject to Multiplicity Adjustment

Order of Testing	Endpoint	TAVR (N=496)	Surgery (N=454)	Treatment Effect [95% CI]	P- value
1	New onset atrial fibrillation at 30 days	5.0%	39.5%	0.10 [0.06, 0.16]	<0.001
2	Length of index hospitalization (days)	3.0 (2.0, 3.0)	7.0 (6.0, 8.0)	-4.0 [-4.0, -3.0]	<0.001
3	All-cause death, all stroke, or rehospitalizations at 1 year	8.5%	15.1%	0.54 [0.37, 0.79]	0.001
4	Death, KCCQ < 45 or KCCQ decrease from baseline ≥ 10 points at 30 days	3.9%	30.6%	-26.7% [-31.4%, -22.1%]	<0.001
5	Death or all stroke at 30 days	1.0%	3.3%	0.30 [0.11, 0.83]	0.01
6	All stroke at 30 days	0.6%	2.4%	0.25 [0.07, 0.88]	0.02

* P-value is Log-Rank test for items 1, 3, 5 and 6; P-value is Wilcoxon Rank-Sum Test for item 2; P-value is Fisher's Exact test for item 4
PARTNER 3 trial Other Secondary Endpoints

	30 Days			1 Year		
Outcomes	TAVR (N=496)	Surgery (N=454)	P-value	TAVR (N=496)	Surgery (N=454)	P-value
Bleeding - Life-threat/Major	3.6% (18)	24.5% (111)	<0.001	7.7% (38)	25.9% (117)	<0.001
Major Vascular Complics	2.2% (11)	1.5% (7)	0.45	2.8% (14)	1.5% (7)	0.19
AKI - stage 2 or 3*	0.4% (2)	1.8% (8)	0.05	0.4% (2)	1.8% (8)	0.05
New PPM (incl baseline)	6.5% (32)	4.0% (18)	0.09	7.3% (36)	5.4% (24)	0.21
New LBBB	22.0% (106)	8.0% (35)	<0.001	23.7% (114)	8.0% (35)	<0.001
Coronary Obstruction	0.2% (1)	0.7% (3)	0.28	0.2% (1)	0.7% (3)	0.28
AV Re-intervention	0% (0)	0% (0)	NA	0.6% (3)	0.5% (2)	0.76
Endocarditis	0% (0)	0.2% (1)	0.29	0.2% (1)	0.5% (2)	0.49
Asymp Valve Thrombosis	0.2% (1)	0% (0)	0.34	1.0% (5)	0.2% (1)	0.13

Event rates are KM estimates (%) and p-values are based on Log-Rank test * Event rates are incidence rates and p-value is Fisher's Exact test

PARTNER 3 trial Echocardiography Findings

Mean Gradient

P-values are based on the ANCOVA for TAVR vs Surgery adjusted by baseline.

PARTNER 3 trial Echocardiography Findings

Aortic Valve Area

28th TCTAP 2023

The PARTNER trials

Valve Size Distribution

28th TCTAP 2023

PARTNER 3 trial Paravalvular Regurgitation

P-values are based on the Wilcoxon rank-sum test.

SAPIEN 3 Ultra

Changes in Sapien Series

- 2. Leon MB, Smith CR, Mack MJ, et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N Engl J Med. 2016.
- 3. Mack MJ, Leon MB, Thourani VH, et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N Engl J Med. 2019.
- 4. Nazif T, Daniels D, McCabe J, Chehab B, et al. Real-world experience with the SAPIEN 3 Ultra TAVI: A propensity matched analysis from the United States. Presented virtually at TVT Connect 2020.

Edwards SAPIEN 3 Ultra System

: Complete range of valve sizes

SAPEIN	3 Ultra
--------	---------

	20 mm	23 mm	26 mm	29 mm
Valve	SAPIEN 3 Ultra	SAPIEN 3 Ultra	SAPIEN 3 Ultra	SAPIEN 3
Native Annulus Size by TEE*	16 – 19 mm	18 – 22 mm	21 – 25 mm	24 – 28 mm
Native Annulus Area (CT)*	273 – 345 mm²	338 – 430 mm ²	430 – 546 mm ²	540 – 683 mm²
Area-derived Diameter (CT)*	18.6 – 21 mm	20.7 – 23.4 mm	23.4 – 26.4 mm	26.2 – 29.5 mm
Edwards eSheath Introducer set	14F	14F	14F	16F
Minimum access vessel diameter	5.5 mm	5.5 mm	5.5 mm	6.5 mm

Edwards SAPIEN 3 Ultra System

Commander delivery system Physician controlled dual articulation with tapered distal tip

eSheath set

14Fr eSheath compatible

1 Available in 20, 23 and 26mm sizes 2 Compared to the Edwards SAPIEN 3 valve

SAPIEN 3 Ultra valve vs SAPIEN 3

Building on the standard in TAVI to meet the needs of today

SAPIEN 3

Same frame and leaflet design¹

- Cobalt-Chrome alloy frame
- Bovine pericardial leaflets
- Cell frame design
- PET outer skirt
- 14F sheath compatibility²

Improved taller, textured outer skirt

- Approximately 40% increased outer skirt height¹
- Textured PET (↔ S3 = Flat layered)
 - : Enhance healing and endothelialization^{3,4}

SAPIEN 3 Ultra

1. Compared to the Edwards SAPIEN 3 valve 2. 2019 4 Ultra transcatheter Aortic Valve Device 3. For 20, 23, and 26 mm sizes 3. Soumen Jana, Acta biomater, 4. Barbanti & Costa, JACC 2020 SAPIEN

Decreased Significant PVL

Leon MB, Smith CR, Mack MJ, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363(17):1597-1607.
Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609-1620.
Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380(18):1695-1705.
Nazif T, Daniels D, McCabe J, Chehab B, et al. Real-world experience with the SAPIEN 3 Ultra TAVI: A propensity matched analysis from the United States. Presented virtually at TVT Connect 2020.

Reduced vascular complications with low profile introducer

1. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363(17):1597-1607.

- 2. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients. N Engl J Med. 2011;364:2187-2198.
- 3. Webb JG, Doshi D, Mack MJ, et al. A randomized evaluation of the SAPIEN XT transcatheter heart valve system in patients with aortic stenosis who are not candidates for surgery. JACC Cardiovasc Interv. 2015;8(14):1797-1806.
- 4. Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609-1620.
- 5. Kodali S, Thourani VH, White J, et al. Early clinical and echocardiographic outcomes after SAPIEN 3 transcatheter aortic valve replacement in inoperable, high-risk and intermediate-risk patients with aortic stenosis. Eur Heart J. 2016;37(28):2252-2262.
- 6. Mack M, Leon M, Thourani R, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 2019;380:1695-705.
- 7 Nazif T, Daniels D, McCabe J, Chehab B, et al. Real-world experience with the SAPIEN 3 Ultra TAVI: A propensity matched analysis from the United States. Presented virtually at TVT Connect 2020

COVRF

Predictability and control, to further reduce the risk of conduction disturbances with SAPIEN 3 Ultra

Globally consistent, single-digit new permanent pacemaker rates

1. Wood, DA, Lauck SB, Cairns JA, et al. The Vancouver 3M (multidisciplinary, multimodality, but minimalist) clinical pathway facilitates safe next-day discharge home at low-, medium-, and high-volume transfermoral transcatheter aortic valve replacement centers: the 3M TAVI study. J Am Coll Cardiol Intv. 2019;12(5):459-469.

- 2. Barbanti M, van Mourik MS, Spence MS, et al. Optimising patient discharge management after transfemoral transcatheter aortic valve implantation: the multicentre European FAST-TAVI trial. EuroIntervention. 2019;15:147-154.
- 3. Yamamoto M, Watanabe Y, Tada N, et al. Transcatheter aortic valve replacement outcomes in Japan: optimized catheter valvular intervention (OCEAN) Japanese multicenter registry. Cardiovasc Revasc Med. 2019;20(10):843-851.
- 4. Saia F, et al. In-hospital and thirty day outcomes of the SAPIEN 3 Ultra balloon-expandable TAVR: the S3U registry. Eurointervention 2020.
- 5. Nazif T, Daniels D, McCabe J, Chehab B, et al. Real-world experience with the SAPIEN 3 Ultra TAVR: A propensity matched analysis from the United States. Presented virtually at TVT Connect 2020.

49

SAPIEN 3 Ultra Outcomes in TVT Registry

Delivering outcomes your patients can count on:

Stroke

Rehospitalization

Bleeding

30 days (TVT registry, 2021)

n=1,324	S3U TAVI ¹
All-cause mortality	0.9%
All-cause stroke	1.2%
Rehospitalization	4.4%
New permanent pacemaker	6.0%
Major vascular complication	1.1%
Life-threatening bleeding	0.0%

Optimal Initial Valve Positioning Using Fine Control Features of Edward Commander Delivery System

Edwards Commander Delivery System

B (**Dual Articulation Fine Positioning**

Optimal Center Marker Zone (6mm)

Designed for Precise Deployment and Positioning

Over 99% of valves placed in the intended location*

* PARTNER II Trial high-risk & inoperable TF SAPIEN 3 valve cohort

Optimal Target for Area Oversizing : SAPIEN 3

CoreValve Trials

CoreValve US Pivotal Trial Primary Endpoint: 1 Year All-cause Mortality

28th TCTAP 2023

CoreValve US Pivotal Trial 2-Year All-cause Mortality

CoreValve US Pivotal Trial All Stroke

TCTAP 2023

CoreValve US Pivotal Trial Major Stroke

CoreValve US Pivotal Trial All-Cause Mortality or Major Stroke

TCTAP 2023

CoreValve US Pivotal Trial

Other Endpoints

Events*	1 Month			1 Year		
	TAVR	SAVR	P Value	TAVR	SAVR	P Value
Vascular complications (major), %	5.9	1.7	0.003	6.2	2.0	0.004
Pacemaker implant, %	19.8	7.1	<0.001	22.3	11.3	<0.001
Bleeding (life threatening or disabling),%	13.6	35.0	<0.001	16.6	38.4	<0.001
New onset or worsening atrial fibrillation, %	11.7	30.5	<0.001	15.9	32.7	<0.001
Acute kidney injury, %	6.0	15.1	<0.001	6.0	15.1	<0.001

* Percentages reported are Kaplan-Meier estimates and log-rank P values

Adams DH, Popma JJ, Reardon MJ, et al. New Engl J Med 2014; Mar 29, [Epub ahead of print]

CoreValve US Pivotal Trial Echocardiographic Findings

CoreValve US Pivotal Trial Paravalvular Regurgitation

CoreValve US Pivotal Trial- 3 year result All-Cause Mortality or Stroke

CoreValve US Pivotal Trial- 3 year result All-Cause Mortality or Major Stroke

CoreValve US Pivotal Trial- 3 year result All Stroke

CoreValve US Pivotal Trial- 3 year result All-Cause Mortality

CoreValve US Pivotal Trial- 3 year result All-Cause Mortality – STS ≤ 7%

CoreValve US Pivotal Trial- 3 year result MACCE

CoreValve US Pivotal Trial- 3 year result Valve Hemodynamics (site-reported)

TAVR had significantly better valve performance vs SAVR at all follow-ups (P<0.001)

CoreValve US Pivotal Trial- 3 year result Hemodynamic Signals (*site-reported*)

Mean AV Gradients for Patients With >50% Increase From 1 Month to 3 Years

28th TCTAP 2023

CoreValve US Pivotal Trial-3 year result Total Aortic Regurgitation *(site reported)*

Significantly less AR with SAVR vs. TAVR at Each Time Point (P<0.001)

SURTAVI TRIAL

Trial Design

Study Timeline

Patient Flow

*The modified intention-to-treat (mITT) population includes all subjects with an attempted procedur

All-Cause Mortality or Disabling Stroke

All-Cause Mortality

Disabling Stroke

Hemodynamics

TAVR had significantly better valve performance vs SAVR at all follow-ups

KCCQ Summary Score Over Time

Total Aortic Regurgitation

Evolut Low Risk Trial

Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients

*Additional patients were randomized to permit completion of the LTI substudy and to enroll a Japanese cohort.

Study Timeline and Valves Studied

Evolut Low Risk Trial Baseline Characteristics

Mean ± SD or %	TAVR (N=725)	SAVR (N=678)
Age, years	74.1 ± 5.8	73.6 ± 5.9
Female sex	36.0	33.8
Body surface area, m ²	2.0 ± 0.2	2.0 ± 0.2
STS PROM, %	1.9 ± 0.7	1.9 ± 0.7
NYHA Class III or IV	25.1	28.5
Hypertension	84.8	82.6
Chronic lung disease (COPD)	15.0	18.0
Cerebrovascular disease	10.2	11.8
Peripheral arterial disease	7.5	8.3

There are no significant differences between groups.

Evolut Low Risk Trial Baseline Cardiac Rissk Factors

Mean ± SD or %	TAVR (N=725)	SAVR (N=678)
SYNTAX Score	1.9 ± 3.7	2.1 ± 3.9
Permanent pacemaker, CRT or ICD	3.2	3.8
Prior CABG	2.5	2.1
Previous PCI	14.2	12.8
Previous myocardial infarction	6.6	4.9
Atrial fibrillation/flutter	15.4	14.5
Aortic valve gradient, mm Hg	47.0 ± 12.1	46.6 ± 12.2
Aortic Valve area, cm ²	0.8 ± 0.2	0.8 ± 0.2
Left ventricular ejection fraction, %	61.7 ± 7.9	61.9 ± 7.7

There are no significant differences between groups.

Evolut Low Risk Trial TAVR Procedural Data

%	TAVR (N=724)
General anesthesia	56.9
Iliofemoral access	99.0
Embolic protection device used	1.2
Pre-TAVR balloon dilation	34.9
Post-TAVR balloon dilation	31.3
More than 1 valve used	1.2
Partial or complete repositioning of the valve (Evolut/PRO only)	37.3
Staged or concomitant PCI performed	6.9

Primary Endpoint All-Cause Mortality or Disabling Stroke at 2 Years

Hierarchical Secondary Endpoints All Noninferiority and Superiority Endpoints Met

	TAVR	SAVR	Difference TAVR–SAVR	Posterior P robability
Noninferiority (margin)			(90% BCI)	
Mean gradient at 12 months (5 mmHg)	8.6 ± 3.7	11.2 ± 4.9	-2.6 (-3.1, -2.1)	> 0.999 🗸
Mean EOA at 12 months (0.1 cm ²)	2.3 ± 0.7	2.0 ± 0.6	0.3 (0.2, 0.4)	> 0.999 🗸
Mean NYHA class change (12 months –Baseline) (0.375)	0.9 ± 0.7	1.0 ± 0.7	-0.1 (-0.2, 0.0)	> 0.999 🗸
Mean KCCQ change (12 months –Baseline) (5)	22.2 ± 20.3	20.9 ± 21.0	1.3 (-1.2, 3.8)	> 0.999 🗸
Superiority			(95% BCI)	
Mean gradient at 12 months, mmHg	8.6 ± 3.7	11.2 ± 4.9	-2.6 (-3.2, -2.0)	> 0.999 🗸
Mean EOA at 12 months, cm ²	2.3 ± 0.7	2.0 ± 0.6	0.3 (0.2, 0.4)	> 0.999 🗸
Mean KCCQ change (30 Days–Baseline)	20.0 ± 21.1	9.1 ± 22.3	10.9 (8.6, 13.2)	> 0.999 🗸

Evolut Low Risk Trial Clinical Outcomes at 30 Days

Bayesian rates as %	TAVR (N=725)	SAVR (N=678)	(95% BCI for Diff erence)
30-Day composite safety endpoint*	5.3	10.7	(-8.3, -2.6)
All-cause mortality	0.5	1.3	(-1.9, 0.2)
Disabling stroke*	0.5	1.7	(-2.4, -0.2)
Life-threatening or disabling bleeding*	2.4	7.5	(-7.5, -2.9)
Acute kidney injury, stage 2-3*	0.9	2.8	(-3.4, -0.5)
Major vascular complication	3.8	3.2	(-1.4, 2.5)
Atrial fibrillation*	7.7	35.4	(-31.8, -23.6)
Permanent pacemaker implant*		6.1	(8.0, 14.7)
All-cause mortality or disabling stroke*	0.8	2.6	(-3.2, -0.5)
All stroke	3.4	3.4	(-1.9, 1.9)
Aortic valve reintervention	0.4	0.4	(-0.8, 0.7)

* Significantly favors TAVR; * Significantly favors SAVR

BCI = Bayesian credible interval

Evolut Low Risk Trial Clinical Outcomes at 1 Year

Bayesian rates as %	TAVR (N=725)	SAVR (N=678)	(95% BCl for Diff erence)
All-cause mortality or disabling stroke	2.9	4.6	(-4.0, 0.4)
All-cause mortality	2.4	3.0	(-2.6, 1.3)
Cardiovascular mortality	1.7	2.6	(-2.7, 0.7)
All stroke	4.1	4.3	(-2.4, 1.9)
Disabling stroke*	0.8	2.4	(-3.1, -0.3)
Transient ischemia attack	1.7	1.8	(-1.6, 1.3)
Myocardial infarction	1.7	1.6	(-1.3, 1.5)
Endocarditis	0.2	0.4	(-0.9, 0.5)
Valve thrombosis	0.2	0.3	(-0.9, 0.5)
Aortic valve reintervention	0.7	0.6	(-1.0, 0.9)
Heart failure hospitalization*	3.2	6.5	(-5.9, -1.0)
* Significantly favors TAVR		B	CI = Bayesian credible interv

BCI = Bayesian credible interval

Evolut Low Risk Trial K-M All-Cause Mortality or Disabling Stroke at 1 Year

Evolut Low Risk Trial K-M Rates of All-Cause Mortality at 1 Year

Evolut Low Risk Trial K-M Disabling Stroke at 1 Year

Evolut Low Risk Trial K-M Heart Failure Hospitalization at 1 Year

Valve Hemodynamics

Implanted population. Core lab assessments.

Prosthesis-Patient Mismatch

Implant population. Core lab assessments.

Total Aortic Valve Regurgitation

Implant population. Core lab assessments.

KCCQ Summary Score

Evolut R self-expandable THV

Pre-Procedure CT Planning

BASAL ANNULAR PLANE

The cusp overlap technique requires high quality gated CT with contrast; free from movement artifacts and slice misregistration.

Set basal annular plane by placing markers at lowest point in the <u>center</u> of each cusp in short axis view.

> Centering markers on the cusps is critical for CT determination of overlap imaging projections.

Evolut Platform Cusp Overlap Technique | Medtronic-Confidential

Determine Cusp Overlap Imaging Projections

High quality CT imaging is critical to identify projections along the S-curve.

Rotation along the S-curve allows visualization of the basal annular plane in multiple projections.

In a long axis view, determine cusp overlap projection by moving along S-curve until RCC and LCC overlap.

Pre-Procedure CT Planning NEAR OVERLAP VIEW EXAMPLE

If the cusp overlap imaging projection is unattainable due to patient body habitus and/or equipment limitations, move along S-curve to a near cusp overlap view.

RAO 13°, Caudal 42°

Near Overlap View

Evolut Platform Cusp Overlap Technique | Medtronic-Confidential

A

Assess Depth Accurately at the NCC

The L-R cusp overlap projection isolates the NCC, elongates visualization of the LVOT, and maintains coplanar cusp alignment to provide a more accurate view of TAV depth.

Views which do not maintain alignment of cusps introduce error in perception of TAV depth at the NCC and LCC¹:

- This error results in TAV appearing higher than actual depth.
- An approximate error of 1 mm in depth is introduced for each 10° movement in the LAO or Caudal directions.

1. Fraser, D. Presented at London Valves, 2019.

Introduce Delivery System

With the InLine Sheath fully forward and the flush port facing away from the operator (oriented at 3 o'clock), load the DCS onto the guidewire and insert into the patient.

- 3 o'clock flush port orientation is reported to be associated with higher rates of commissural alignment between the TAV and native anatomy.¹
- Commissural alignment may help facilitate future coronary access.

1. Tang et al. JACC: Cardiovascular Interventions, 2020

TCTAP 2023

R

Reduce Interaction with Conduction System

More accurate visualization of depth and approaching target depth (3 mm) from above the annulus may reduce potential for conduction disturbances.

Begin Deployment with Radiopaque Marker Band at Mid-Pigtail

3 mm Target Implant Depth

Starting Position

CUSP OVERLAP VIEW

After crossing the arch according to transfemoral best practices, move to the predetermined cusp overlap view.

Confirm placement of pigtail catheter at the bottom of the NCC and position the catheter marker band at the midpoint of pigtail catheter.

- If extreme parallax in catheter marker band is present, consider the following:
 - Adjust to a near overlap view
 - Reposition wire to ensure appropriate placement in non-right commissure
 - Select a more supportive wire

ADJUSTMENT TO TARGET IMPLANT DEPTH

Slowly deploy the valve until the marker band reaches the third node of frame.

- Use small movements (¼ turns) to facilitate slow deployment
- Approach target depth (3 mm) from a supra-annular starting position to allow valve to descend to target depth
 - This method is intended to minimize interaction below annulus to reduce risk of conduction abnormality

Evolut Platform Cusp Overlap Technique | Medtronic-Confidential

Pacing Considerations

- Consider using pacing to help increase valve stability by:
 - Stabilizing hemodynamics.
 - Minimizing potential for late movement due to ectopy or respiration.
- Steps:
- Begin pacing when marker band is at 3rd node (prior to annular contact).
- Start pacing at 120 bpm and adjust, in consideration of individual patient factors, to achieve desired systolic pressure.
- Rapidly deploy from annular contact to before the point of no recapture as unexpanded bioprosthesis temporarily obstructs cardiac output.
- Discontinue pacing immediately before reaching the point of no recapture.
 - Consider discontinuation of pacing by stepping the rate down incrementally.

Trust the Cusp Overlap View for NCC and Verify LCC Depth in the LAO View

Moving to an LAO view before the point of no recapture allows separation of the LCC to confirm depth and inform the decision to deploy or recapture the TAV.

Confirm TAV depth at LCC in the LAO view

Move to LAO View CONFIRM DEPTH AND PERFORMANCE

- Move to a 3 cusp coplanar view and then roll LAO (no greater than 25°) until aortic arch is open and parallax at the inflow is minimized.
 - Remove any remaining parallax at inflow by moving caudal
- Assess depth at LCC
- Confirm valve performance:
 - Assess hemodynamics and prosthetic regurgitation
 - Confirm coronary perfusion
 - Determine whether to deploy or recapture

LAO View

Recapture Considerations

Just before the point of no recapture, assess valve position and depth; consider recapturing the TAV if depth is < 1 mm or > 5 mm at the NCC.

- Depth < 1 mm may contribute to an increased risk of valve migration upon release.
- Depth > 5 mm may contribute to an increased risk of conduction disturbances which may require a permanent pacemaker.

The valve can be partially or fully recaptured up to three times at any point before the point of no recapture:

- First two attempts to reposition and redeploy the valve.
- Third attempt must be a complete recapture and retrieval from patient.

Note: the valve will occlude cardiac output between 2/3 to 1/3 recapture. | Medtronic-

TCTAP 2023

Evolut Platform Cusp Overlap Technique | Medtronic-Confidential

Deployment

PREPARING FOR FULL RELEASE

 After confirming valve position and performance, release tension, apply forward pressure to centralize delivery system in aorta, and pull guidewire back from apex.

• Remove pigtail from NCC.

- <u>Very slowly</u> deploy as outflow region leaves capsule and paddles release.
 - Use ¼ turns and pauses to minimize any potential movement upon release.
 - This final phase of deployment should generally be completed over 30 seconds.

CoreValve

Self-Expanding Frame

- Conforms and seals to the annulus
- The foundation for recapturability

Supra Annular Valve Design

• Maximize flow and optimize coaptation

Porcine Pericardial Tissue

- Thinness for low profile delivery
- Strength and pliability for long-term durability

A Medtronic

Loading System

Transcatheter Valve

Evolut R Recapture and Reposition

EnVeo R DCS provides option to *recapture and reposition up to three times* before reaching the 'Point of No Recapture'*

* Up to 80% deployment

1023 TCTAP 2023

Evolut R Enhanced Sealing

Enhanced Sealing with a More Conformable Frame *

- 1. Increased Oversizing
- 2. More Consistent Radial Force
- 3. Extended Sealing Skirt

Note: images may not be to exact scale and are for illustration purposes only. *CoreValve Evolut R 26 and 29 mm only

Design Goals For Evolut R

(TcheTche, et. al. – EuroIntervention 2012)

Low Sheath OD to Femoral Artery Ratio (SFAR)

Reduces risk of major vascular complications and improves access

Annular sealing Reduces paravalvular leak

3

(Hayashida K., Lefevre T., Chevalier B.; et al. Transfemoral Aortic Valve Implantation; New Criteria to Predict Vascular Complications, J Am Coll Cardiol Intv 4 2011 851-858)

CT images courtesy of Dr. Piazza and Prof. Lange, German Heart Center, Munich Germany

Evolut R : broad coverage of size Indicated Size Range

Patient Annulus Diameter Range (mm)

EnVeo R Delivery Catheter Dimensions

Lowest Delivery Profile True 14Fr system with 5mm vessel indication

Sheath size comparison (Evolut R vs Sapien3)

Evolut R Clinical Evidence : low risk of stroke Medtronic-Sponsored Studies

³Williams, et al., presented at ACC 2016;

280 TCTAP 2023

CVRF

Evolut R : Wide Orifice Area With Supra-Annular Valve Design

Hemodynamics : best d/t wide orifice area EOA (cm²) and Mean Gradient (mm Hg) at 30 Days

Evolut R : Annular Rupture is Rare

Annular rupture is mainly associated with the inflation of a balloon, either during valve deployment or pre- or post-dilation

% Patients with Annular Rupture

¹Leon, et. al. presented at ACC 2013; ²Kodali, et al., presented at ACC 2015; ³Popma, et al., J Am Coll Cardiol 2014; 63: 1972-81; ⁴Linke, et al., Eur Heart J 2014; 35: 2672-84; ⁵Adams, et al., N Engl J Med 2014; 370: 1790-8; ⁶Meredith, et. al. presented at EuroPCR 2015

Evidence of Continued Outward Expansion LVOT Diameter Outer to Outer Edge

Continued Outward Expansion Leads to Reduction in AV Gradient

Continued Outward Expansion Leads to Regression of PVL with Time | ADVANCE II Study

Paired data show >mild PVL decreased significantly from day 7 to 6 months (p=0.005[†])

CoreValve ADVANCE II Study

Loaded Capsule under Fluoroscopy

Note: Measurements provided are approximate based on engineering specifications.

Marker Band with Hat Marker

The hat marker is a wider portion of radiopaque marker band extending approximately 1/3 the circumference of the marker band

- Resembles a hat when viewed under fluoroscopy
- Used to assess delivery system orientation

Evolut R Target Implant Depth

Target implant depth is 3 - 5 mm

- Midway between node 0 (inflow edge of frame) and node 1 to just below node 1
- Note: due to minor valve frame length differenc es, ensure to assess valve position from frame inflow (node 0) and not the edge of the marker band:

Positioning Accuracy: 1:1 Response

Cross section of catheter shaft (excluding the stability layer)

Catheter shaft 'spines' provide stability to reduce stretching or compr essing of shaft to enable 1:1 Response

Positioning Accuracy: Self-Centering

EnVeo R's Capsule flare and flexible catheter design enable uniform and controlled valve expansion and self-centering of the valve in the annulus

Positioning Accuracy: Ability to Recapture and Reposition

EnVeo R provides option to recapture and reposition up to three times before reaching the 'Point of No Recapture'*

Just Prior to Point of No Recapture ~ 80% Deployment*

* Up to 80% deployment

Positioning Accuracy: Ability to Recapture and Reposition

Laser-cut Nitinol capsule within two polymer layers provides structural suppor t necessary to resheath partially deployed valve.

Enhanced Sealing: Optimized Oversizing, Consistent Radial Force, and Extended Sealing Skirt¹

For Exceptional Valve Performance and Reduced Significant PVL²

Consistent radial force Contributes to improved sealing across indicated annulus range for each valve

Annulus Diameter Range (mm) -----

- ⁴ Rened on combined radial funce curve for Centifable 26, 29 and 31 num transportments values.
- *** Receipt on combined radial force curve for Confidence System P 23, 36, 79mm transcutheter values

" Represents Contralive Evolut R 23, 26, 29mm Interaconheter value

1. Available on 26 and 29 mm sizes

 Medtronic data on file. 23R comparison of CoreValve to CoreValve Evolut. Significant PVL defined as ≥ moderate PVL.

TCTAP 2023

Optimized Oversizing

Oversizing

• The size of the bioprosthesis inflow dia meter relative to the native annulus:

 $Oversizing = \frac{(Device - Annulus)}{Annulus} x \ 100$

Evolut R Design

- Minimum oversizing design target accomplished through:
 - Wider and more cylindrical inflow
 - Indicated sizing range

Evolut #* Design Target (Min)

Annulus Diameter Range (mm) ->

Reparsents Carelyalve Evolut R 23, 26, 29mm transcatheter valve

Evolut TAVR Platform

Target implant depth is **3 - 5 mm** for all valve sizes

Note: Measurements provided are approximate based on engineering specifications.

Ease of Use: 'C' Paddle Marker

'C' marker on one paddle aligns with commissure to help assess post deployment commissure orientation.

Evolut platform

ABILITY TO TREAT BROADEST ANNULUS

Together, the Evolut PRO and Evolut R Systems treat the widest annulus range of any commercially available TAVR platform*

	23 m	m		26 mm			29 mm			3 4 mm				
Diameter (mm) 17**	18	19	20	21	22	23	24	25	26	27	28	29	30	
Perimeter (mm) + 53.4**	56.5		62.8			72.3			81.7				94	

* Based on CT measurement

**Measurement for TAV in SAV only. | \dagger Annulus Perimeter = Annulus Diameter x π

Evolut PRO

Intended for Advanced Sealing

- Conforming frame and consistent radial force provide contact at multiple levels in various annulus shapes
- External tissue wrap increases surface contact area

Proven Platform Performance

- Controlled, accurate deployment with the ability to recapture
- Supra-annular valve function provides unsurpassed hemodynamics
- Lowest delivery profile with integrated InLine
 Sheath

28th TCTAP 2023 Medtronic

Evolut PRO

Low rates of PVL while maintain Low rates of mortality, stroke, and need for pacemaker

Forrest, et al. ACC, 2017

Medtronic

Evolut PRO

Supra-annular valve function provides single-digit gradients & large effective orifice areas

Medtronic Forrest, et al. ACC, 2017
Evolut PRO

87.9% of survivors improved NYHA class at 30days

Lowest delivery profile
For access down to 5.0 mm vessels with the 23-29 mm valves

Advanced sealing
For all valve sized with the addition of the external tissue wrap to the 34 mm valve

Medtronic

Evolut PRO+

SUPERIOR EOAs at 1 year

Evolut TAVR 2.3 cm² VS. SAVR 2.0 cm²

LARGER EOAs

Medtronic

SUPERIOR Gradients at 1 year

Evolut TAVR 8.6 mm Hg VS. SAVR 11.2 mm Hg

LOWER GRADIENTS

15% 23%

Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N Engl J Med. May 2, 2019;380(18):1706-1715.

Evolut PRO+

Total Aortic Regurgitation at 30 Days⁶

Low Rates of Moderate/Severe PVL

Real-world commercial experience from the STS/ ACC TVT Registry^{™*} demonstrates excellent PVL performance.

> Forrest JK, Williams MR, Popma JJ, et al. 30-Day Outcomes Following Transcatheter Aortic Valve Replacement With the Evolut PRO Valve in Commercial Use: A Report from the STS/ACC TVT Registry[™]. Presented at TCT 2018; San Diego, CA.

> > Medtronic

NOTION TRIAL

NOTION Trial

- First All Comer Trial to Compare TAVR vs. SAVR
- Age ≥70 years
- Self-expanding Bioprosthesis
- Transfemoral or Subclavian Access
- Major Exclusion Criteria
 - Severe CAD
 - Severe other valve disease
 - Prior heart surgery
 - Recent stroke or MI
 - Severe lung or renal disease

NOTION Trial: Baseline Characteristics

Characteristic, % or mean ± SD	TAVR n=145	SAVR n=135	P value
Age (yrs)	79.2 ± 4.9	79.0 ± 4.7	0.71
Male	53.8	52.6	0.84
Society of Thoracic Surgeons (STS) Score	2.9 ± 1.6	3.1 ± 1.7	0.30
STS Score < 4%	83.4	80.0	0.46
Logistic EuroSCORE I	8.4 ± 4.0	8.9 ± 5.5	0.38
NYHA class III or IV	48.6	45.5	0.61

NOTION Trial: Death, Stroke, or MI

NOTION Trial @ 2 Years

Events (%)	No of Pts With Events (%)				
	TAVR	SAVR	P Value		
All-Cause Death	11 (8.0)	13 (9.8)	0.54		
Cardiovascular Death	9 (6.5)	12 (9.1)	0.40		
Neurologic Events	13 (9.7)	10 (7.8)	0.67		
Stroke	5 (3.6)	7 (5.4)	0.46		
ΤΙΑ	8 (6.0)	4 (3.3)	0.30		
Myocardial Infarction	7 (5.1)	8 (6.0)	0.69		
New-Onset of Worsening A.fib	32 (22.7)	80 (60.2)	<0.001		
PPM Implantation	55 (41.3)	5 (4.2)	<0.001		
PVL ≥ Moderate	19 <mark>(15.4)</mark>	1 (0.9)	<0.001		

NOTION Trial : Death, MI, or Stroke @ 2 Years

NOTION Trial

Long-Term (> 5years) Outcomes of TAVR vs SAVR In Low-Risk Patients

Lars Søndergaard et al, J Am Coll Cardiol. 2019;73:546–53

NOTION Trial Trial Flow

NOTION Trial: 6 year Results All-cause mortality

CVRF

TCTAP 202

NOTION Trial: 6 year Results Aortic valve performance

CVRF

NOTION Trial: 6 year Results Structural valve deterioration

NOTION Trial Durability analysis methods

• SVD

- Moderate or severe haemodynamic SVD
 - Mean gradient ≥20 mmHg *or*
 - Mean gradient ≥10 mmHg change from baseline *or*
 - Moderate/severe intra-prosthetic aortic regurgitation (AR) (new or worsening from baseline)
- NSVD
 - Moderate/severe patient-prosthesis mismatch (PPM) at 3 months or
 - Moderate/severe paravalvular regurgitation (PVL)

NOTION Trial: 6 year Results Bioprosthetic valve failure

The U.K. TAVI registry Long-Term Durability of Transcatheter Aortic Valve Prostheses

Daniel J. Blackman et al, J Am Coll Cardiol. 2019;73:537–45

UK TAVI Registry Freedom From Structural Valve Deterioration Over Time

Severe SVD 1 case (0.4%) - 5.3 years after implantation (new severe AR)Moderate SVD 21 cases (8.7%) - mean 6.1 years post-TAVR; range 4.9 to 8.6 years

28th TCTAP 2023

CoreValve vs. Edwards SAPIEN XT

CHOICE TRIAL

CHOICE trial : Study Design

Abdel-Wahab M, Mehilli J, Frerker C et al. JAMA 2014 Mar 30. [Epub ahead of print]

CHOICE Trial : Procedural Outcome

	Balloon- expandable Valve N=121	Self- expandable Valve N=120	P Value
Immediate procedural mortality, %	0	0	
Final aortic regurgitation			
Angiography, %			
Moderate	3.3	14.1	- 0 001
Severe	0.8	4.2	< 0.001
Echocardiography, %			
Moderate	0.8	5.8	< 0.005
Severe	0.8	0	
Device success (primary endpoint)	95.9	77.5	< 0.001

Adams DH, Popma JJ, Reardon MJ, et al. New Engl J Med 2014; Mar 29, [Epub ahead of print]

CHOICE Trial : 30-Day Clinical Outcome

Variables	Balloon- expandable Valve N=121	Self- expandable Valve N=120	P Value
Death, %			
Any cause	4.1	5.1	0.77
Cardiovascular causes	4.1	4.3	0.99
Stroke	5.8	2.6	0.33
Life threatening bleeding	8.3	12.0	0.35
Major bleeding	19.0	14.5	0.36
Vascular complications	14.0	12.8	0.78
Acute kidney injury	4.1	1.7	0.13
Rehospitalization for heart failure	0.0	4.3	0.02
NYHA class improvement	94.3	86.7	0.06
New permanent pacemaker	17.3	37.6	0.001

CHOICE trial Subgroup Analyses for Device Success

Subgroup	expandable Valve	Self- expandable Valve	Relative Risk (95% Cl)
Overall	95.9	77.5	1.24 (1.12-1.37)
Age, y			
≥80	96.5	81.6	1.18 (1.05-1.33)
<80	94.4	70.4	1.34 (1.09-1.65)
Sex			
Men	96.1	61.8	1.56 (1.19-2.04)
Women	95.6	83.7	1.14 (1.03-1.27)
LV ejection fraction			
>35	96.0	80.0	1.20 (1.08-1.33)
≤35	94.7	73.3	1.29 (0.94-1.78)
Mitral regurgitation			
None/mild	96.0	80.8	1.19 (1.06-1.34)
Moderate/severe	95.5	71.1	1.34 (1.09-1.66)
CT annulus diameter, mm			
<25	93.3	80.9	1.14 (1.01-1.32)
≥25	97.1	69.2	1.40 (1.08-1.82)
Aortic leaflet calcification			
None/mild	88.9	85.0	1.04 (0.78-1.41)
Moderate/severe	95.3	76.7	1.24 (1.09-1.42)

28th TCTAP 2023

CHOICE Trial

	Balloon- expandable Valve N=121	Self- expandable Valve N=120	P Value
Device success (primary endpoint)	95.9	77.5	< 0.001
30-day clinical outcomes			
Death, %			
Any cause	4.1	5.1	0.77
Cardiovascular causes	4.1	4.3	0.99
Stroke	5.8	2.6	0.33
Life threatening bleeding	8.3	12.0	0.35
Vascular complications	14.0	12.8	0.78
Rehospitalization for heart failure	0.0	4.3	0.02
NYHA class improvement	94.3	86.7	0.06
New permanent pacemaker	17.3	37.6	0.001

CoreValve vs. SAPIEN XT Meta-analysis

	EV		CV	8		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI	
Chieffo 2013	6	340	9	453	0.8%	0.89 [0.32, 2.47]			
DiMaro 2012	98	1472	130	1050	16.4%	0.54 [0.42, 0.69]			
Dworakowski 2014	96	1287	157	1153	17.9%	0.55 [0.43, 0.70]			
Gilard 2012	174	2107	138	1043	19.9%	0.62 [0.51, 0.77]			
Hayashida 2012	80	347	21	53	3.9%	0.58 [0.40, 0.85]			
Hernandez-Antolin 2011	1	37	0	21	0.1%	1.74 [0.07, 40.83]	←		
Kasel 2014	3	50	8	50	0.9%	0.38 [0.11, 1.33]	•		
Nombela-Franco 2013	9	41	16	41	1.7%	0.56 [0.28, 1.12]	8		
Spargias 2013	10	59	28	67	2.8%	0.41 [0.22, 0.76]			
Spethmann 2012	5	48	27	98	1.9%	0.38 [0.16, 0.92]	•		
Tchetche 2010	1	24	3	21	0.3%	0.29 [0.03, 2.60]	← →		
Van Belle 2014	243	1872	193	897	28.2%	0.60 [0.51, 0.72]			
Wantabe 2013	26	170	44	150	5.1%	0.52 [0.34, 0.80]			
Total (95% CI)		7854		5097	100.0%	0.57 [0.52, 0.63]		•	
Total events	752		774					677	
Heterogeneity: Chi ² = 5.53	, df = 12	(P = 0)	.94); 12 =	0%			, 1 -		
Test for overall effect: Z =	11.42 (P	< 0.00	001)	194266			0.2	Favours EV Favours CV	5

Conclusion: CoreValve is associated with higher incidence of post-TAVR moderate to severe paravalvular AR.

Bhatheja et al., Cardiovasc Revasc Med 2016

CoreValve vs. Edwards SAPIEN XT

CHOICE TRIAL 5-Year Outcomes

TCTAP 2023

Abdel-Wahab, M. et al. J Am Coll Cardiol Intv. 2020;13(9):1071-82.

	Balloon-Expandable Valve	Self-Expanding Valve	n Value
(extended)	(11 = 121)	(11 = 120)	p value
Death			
From any cause	63 (53.4)	54 (47.6)	0.38
From cardiovascular causes	37 (31.6)	25 (21.5)	0.12
Stroke	21 (17.5)	19 (16.5)	0.73
Repeat hospitalization for heart failure	30 (28.9)	26 (22.5)	0.75
Myocardial infarction	2 (1.6)	7 (6.1)	0.08
Bleeding			
Life threatening	21 (17.3)	18 (16.2)	0.77
Major	28 (26.3)	20 (22.0)	0.26
Minor	17 (14.3)	12 (10.4)	0.37
Vascular complications			
Major	14 (11.6)	14 (12.1)	0.89
Minor	5 (4.2)	3 (2.6)	0.51
New pacemaker*	28 (25.4)	40 (40.4)	0.01

Abdel-Wahab, M. et al. J Am Coll Cardiol Intv. 2020;13(9):1071–82.

All-cause mortality

Cardiovascular mortality

28th TCTAP 2023

Abdel-Wahab, M. et al. J Am Coll Cardiol Intv. 2020;13(9):1071-82.

Echocardiographic F/U at 5 years

	Balloon-Expandable Valve (n = 36)	Self-Expanding Valve (n = 41)	p Value
Effective orifice area, cm ² Number of patients	1.6 ± 0.5 39	1.9 ± 0.5 45	0.02
Mean gradient, mm Hg Number of patients	12.2 ± 8.7 47	6.9 ± 2.7 52	0.001
Transvalvular aortic regurgitation None/trace Mild Moderate Severe Number of patients	46 (97.9) 1 (2.1) 0 (0.0) 0 (0.0) 47	49 (94.2) 3 (5.8) 0 (0.0) 0 (0.0) 52	0.62
Paravalvular aortic regurgitation None/trace Mild Moderate Severe Number of patients	28 (59.6) 19 (40.4) 0 (0.0) 0 (0.0) 47	28 (53.8) 24 (46.2) 0 (0.0) 0 (0.0) 52	0.69
Total aortic regurgitation None/trace Mild Moderate Severe	27 (57.4) 20 (42.6) 0 (0.0) 0 (0.0)	25 (48.1) 27 (51.9) 0 (0.0) 0 (0.0)	0.42
Left ventricular ejection fraction, %	54.4 ± 10.2	57.2 ± 8.4	0.15
Left ventricular end-systolic dimension, mm Left ventricular end-diastolic dimension, mm	34.4 ± 12.0 45.5 ± 7.7	$\begin{array}{c} 29.1\pm6.7\\ \textbf{41.7}\pm\textbf{6.8} \end{array}$	0.02 0.02
Systolic pulmonary artery pressure, mm Hg	30.9 ± 12.0	29.0 ± 12.7	0.49
Moderate/severe mitral regurgitation Moderate/severe tricuspid regurgitation	15/47 (31.9) 10/45 (22.2)	9/48 (18.7) 13/47 (27.6)	0.13 0.54

1012 TCTAP 2023

Abdel-Wahab, M. et al. J Am Coll Cardiol Intv. 2020;13(9):1071–82.

Forward-Flow Hemodynamics From Baseline to 5 Years

1012 TCTAP 2023

Abdel-Wahab, M. et al. J Am Coll Cardiol Intv. 2020;13(9):1071-82.

Bioprosthetic valve dysfunction through 5 Years

	Balloon-Expandable Valve (n = 121)	Self-Expanding Valve (n = <mark>1</mark> 20)	p Value
Bioprosthetic valve dysfunction	28 (22.5)	26 (20.9)	0.91
Components			
SVD	6 (6.6)	0 (0.0)	0.018
Moderate SVD	4 (5.6)	0 (0.0)	0.047
Severe SVD	2 (0.9)	0 (0.0)	0.20
NSVD	17 (17.8)	23 (26.7)	0.20
Moderate/severe PPM	14 (15.9)	13 (16.0)	1.0
Moderate/severe PVL	3 (2.5)	10 (8.5)	0.08
Valve thrombosis	6 (7.3)	1 (0.8)	0.06
Endocarditis	2 (1.6)	4 (3.4)	0.39

SVD = structural valve deterioration NSVD = nonstructural valve deterioration PPM = patient-prosthesis mismatch PVL = paravalvular leak

Structural Valve Deterioration in the CHOICE trial

Abdel-Wahab, M. et al. J Am Coll Cardiol Intv. 2020;13(9):1071-82.

Direct TAVR vs. Pre-balloon TAVR

Case matched Analysis

Variables	Direct (n=102)	Pre-BAV (n=102)	P-value
Self-expandable	32 (31.7%)	32 (31.7%)	>0.999
Balloon-Ex	70 (68.6%)	70 (68.6%)	>0.999
Prosthesis size (mm)			
23	33 (32.4%)	33 (32.4%)	>0.999
26	48 (47.1%)	48 (47.1%)	>0.999
29	21 (20.6%)	21 (20.6%)	>0.999
Device success	93 (91.2%)	92 (90.2%)	0.810
Post-dilatation	18 (17.6%)	25 (24.5%)	0.356
Need for a Second valve	4 (3.9%)	5 (4.9%)	0.568
Contrast (ml)	137.2± 66.9	167.5 83	0.003
Procedure time (min)	94.7 ± 35.9	135.1± 51.1	<0.001

Ferrera C, et al. Cath Cardiovasc Int 2016 online publication

Post TAVR outcomes

Variables	Direct (n=102)	Pre-BAV (n=102)	P-value
Valvular regurgitation			
Moderate	8 (7.8%)	9 (8.9%)	0.767
Severe	0 (0%)	3 (2.9%)	0.557
Paravalvular regurgitation			
Moderate	3 (3.0%)	1 (1.0%)	0.106
Severe	0 (0%)	2 (2.0%)	0.106
Valve area (cm ²)	2.1±0.48	1.84±0.47	0.106
Peak gradient (mmHg)	15.9±7.7	15.2±5.6	0.588
Mean gradient (mmHg)	8.08±4.5	8.28±3.7	0.454

Ferrera C, et al. Cath Cardiovasc Int 2016 online publication

Paravalvular regurgitation

A trend toward a higher proportion of none paravalvular leakage was observed in the direct implantation group (P=0.09).

Ferrera C, et al. Cath Cardiovasc Int 2016 online publication

Clinical outcomes at 12 months

Variables	Direct (n=102)	Pre-BAV (n=102)	P-value
Major Vascular Complication	9 (10.1%)	15 (14.9%)	0.326
Need for permanent PM	15 (15.0%)	20 (19.6%)	0.339
Stroke	3 (2.9%)	2 (2.0%)	0.571
Acute Kidney Injury (Grade 2 or 3)	0 (0%)	12 (12.2%)	0.001
In-hospital stay (days)	9.9	8.8	0.403
Death (30-day)	5 (4.9%)	10 (9.8%)	0.177
Death (12 months)	9 (14.0%)	20 (23.8%)	0.771

TAVR Vascular Closure Device

Puncture Site

Puncture Site

If there is anteriorly located calcium at puncture site, surgical cut-down would be safer than using percutaneous approach

Anteriorly Located Calcium

Posteriorly Located Calcium

Figure 1 Perclose ProGlide Suture-Mediated Closure System: needle deployment. Reprinted from Perclose ProGlide Suture-Mediated Closure System,²¹ with permission.

- Preclose Suture-Mediated Closure device: Sheath Size 6 Fr
 - Two needles & Polypropylene Monofilament
 - Automated knot tying with pre-tied, heat set knot

Perclose Prostyle® Abbott Vascular Devices

Perclose[™] ProStyle[™] Device

Perclose ProStyle® Abbott Vascular Devices

Improvements Made to Perclose[™] ProStyle[™] SMCR System

MANTA Vascular Closure

- 14 Fr and 18 Fr devices
- 8 Fr Puncture location dilator
- Intra-arterial bioresorbable toggle
- Extra-vascular bovine collagen pad
- Resorbed within 6 months

- Simple lever rotation releases the anchor
- Visual and auditory cues help ensure confident deployment
- Over-the-wire design aids device placement throughout deployment
- Resorbable collagen and anchor sandwich the access site
- Collagen

induces coagulation for rapid hemostasis to promote vessel healing

Sliding suture knot

provides initial compaction of the collagen

Radiopaque lock

secures the sliding suture knot without tamping and is a helpful landmark for future interventions

Lock advancement tube

positions the lock over the suture knot to secure the collagen-anchor sandwich

MANTA Vascular Closure

Median time from deployment to hemostasis (65 seconds mean time)^{2c}

Major complication rate^{2d} and 4.2% VARC-2 Major Vascular Complication Rate (VARC-2 rate lower than published rates for suture-mediated closure)^{6,7}

Complications

Stroke

Causes

- Mechanical Dislodgement
 Catheters, Delivery system,
 Balloon valvuloplasty, Valve depolyment
 Thrombus Formation
- Thrombus Formation
 Inadequate anticoagulation/antiplatelet Tx
 Stasis/Thrombus on device,
 Apical thrombus
- Patient Factors
 Age, LV dysfunction, Atrial fibrillation,
 Pre-existing cerebrovascular disease,
 Presence of aortic debris
- Others

Bleeding, Low output status, Air emboli

Incidence of Stroke

28th TCTAP 2023

PARTNER trial : All Stroke (ITT) 3 year follow-up

Inoperable Cohort

High Risk Cohort

Samir R. Kapadia et al. TCT 2012

Vinod H. Thourani et al. ACC 2013

Timing, Predictive Factors, and Prognostic Value of Stroke in TAVI

Observational study looked at stroke/TIA in 1,061 patients treated at 5 centers, January 2005-September 2011.

- Acute events (≤24 hrs) independently predicted by balloon postdilation and valve dislodgement/ embolization
- Subacute events (1-30 days) predicted by new onset A-fib, while late events (> 30 days) associated with chronic A-fib, PVD, and cerebrovascular disease
- Major stroke predicts mortality both early (OR 7.43; 95% CI 2.45-22.53) and late (HR 1.75; 95% CI 1.01-3.04)

Luis Nombela-Franco, et al. Circulation. 2012;126:3041-3053.

CoreValve Meta-analysis 30 day stroke rate

Stroke is not defined consistently across all studies. ^aIn-hospital stroke rate reported.

- 1. Meredith IT. The Australia-New Zealand Medtronic CoreValve[®] Registry: outcomes in inoperable and high risk AS patients. Presented at: TCT. 2010. 2. Avanzas P, et al. *Rev Esp Cardiol.* 2010;63:141-148.
- 3. Eltchaninoff H. French Registry. TAVI facts, figures and national registries. Presented at: EuroPCR; May 25-28, 2010; Paris, France.
- 4. Bosmans J. Belgian Registry. TAVI facts, figures and national registries. Presented at: EuroPCR; May 25-28, 2010; Paris, France.
- 5. Zahn R. German Registry. TAVI facts, figures and national registries. Presented at: EuroPCR; May 25-28, 2010; Paris, France.
- 6. Ludman P. UK Registry. TAVI facts, figures and national registries. Presented at: EuroPCR; May 25-28, 2010; Paris, France.
- 7. Petronio AS. Italian Registry. TAVI facts, figures and national registries. Presented at: EuroPCR; May 25-28, 2010; Paris, France.
- 8. Ruiz CE, et al. Weighted meta-analysis of early and late clinical outcomes after CoreValve[®] TAVI in seven national registries. Presented at: EuroPCR; May 17-20, 2011; Paris, France. Analysis funded by Medtronic, Inc.

Timing, Risk Factors, Outcomes of Stroke, TIA after TAVR: PARTNER Trial

2621 participants in the PARTNER trial and continued-access registry who were followed out to 30 days, 1 year, and 3 years.

- Stroke incidence was 3.3% at 30d (of which 85% occurred within 1week)
- Rates were 3.8% at 30d, 5.4% at 1y, and
 6.9% at 3y for TF-TAVR
- Higher pre-TAVR AV peak gradient was key risk factor for stroke following TF TAVR; more postdilations, pure aortic stenosis without regurgitation, more pacing runs, earlier date of procedure, and lack of DAPT were risk factors for stroke following TA TAVR

Transcatheter Aortic Valve Replacement and Stroke: a comprehensive review

Periklis A Davlouros, et al. J of Geriatric Cardiology 2018;15:95-104

Embolic protection devices

TriGuard Embolic Deflection Device (Keystone Heart)¹

- ✓ Pore Size: 130 µm
- ✓ Delivery Sheath: 9F
- ✓ Access: Transfemoral
- Coverage: Brachiocephalic, left common carotid, left subclavian

Sentinel Cerebral Protection System (Claret Medical)²

- ✓ Pore Size: 140 µm
- ✓ Delivery Sheath: 6F
- ✓ Access: Brachial or radial
- ✓ Coverage: Brachiocephalic, left common carotid

Embrella Embolic Deflector System (Edwards Lifesciences)³

- ✓ Pore Size: 100 µm
- ✓ Delivery Sheath: 6F
- ✓ Access: Brachial
- ✓ Coverage: Brachiocephalic, left common carotid

Claret Sentinel[™] Cerebral Protection System (CPS)

- The only dual, independent filter (proximal and distal) cerebral embolic protection device with visible embolic debris capture and removal
- The 3rd generation of the 1st commercially available CE-marked embolic protection device
- Universal size and shape
- Deflectable compound curve sheath facilitates cannulation of LCC
- Right transradial6F sheath access using a standard 0.014" guidewire
- Filters are out of the way of TAVI delivery catheter and accessories during the TAVI procedure

Susheel Kodali, TCT 2015

Examples of debris captured with Claret CPS

Susheel Kodali, TCT 2015

SENTINEL Trial

Primary Safety Endpoint 30-Day MACCE

Primary Efficacy Endpoint

MRI New Lesion Volume (Protected Territories)

Kapadia SR, et al. J Am Coll Cardiol. 2017;69:367–377.

SENTINEL Trial

New Lesion Volume – Protected and All Territories

Adjusted for Baseline lesion volume, Valve Type, Interaction of Valve Type and Treatment Arm

			100
	Mean Estimate (95% Cl)	p-value	w 140 E 120 0 100
Protected Territo	ries	SP:	08 T I
Control Arm	162.8 mm3 (107.9, 245.5)	0.0240	ри ји 60 40
Sentinel Arm	83.3 mm3 (55.0, 126.1)	0.0248	
			350
	Mean Estimate (95% CI)	p-value	300
All Territories			E 250
Control Arm	311.1 mm3 (212.2, 456.3)	0.0500	a 200 m 0 150
Santinal Arm	180.6 mm3	0.0500	보 100

Kapadia SR, et al. J Am Coll Cardiol. 2017;69:367–377.

Cerebral Embolic Protection and Outcomes of TAVR

Observational study from STS/ACC TVT Registry

Table 2. Unadjusted Outcomes

	EPD usage (N=12 409)	No EPD usage (N=110 777)	Odds ratio (95% CI)	P value
Primary end point			4.	
In-hospital stroke, n/N (%)	158/12 409 (1.3)	1716/110 777 (1.5)	0.82 (0.65-1.03)	0.083
Secondary end points		-		
In-hospital stroke or death, n/N (%)	245/12 409 (2.0)	2876/110 777 (2.6)	0.76 (0.62-0.92)	0.006
In-hospital stroke or TIA, n/N (%)	183/12 409 (1.5)	1872/110 777 (1.7)	0.87 (0.72-1.06)	0.160
In-hospital death, n/N (%)	99/12 409 (0.8)	1317/110 777 (1.2)	0.67 (0.51-0.88)	0.005
Device success, n/N (%)	11 745/12 120 (96.9)	107 072/110 090 (97.3)	0.88 (0.62-1.25)	0.482
In-hospital major bleeding, n/N (%)	491/12 266 (4.0)	4808/108 858 (4.4)	0.90 (0.75–1.09)	0.277
30-day stroke, n/N (%)	216/11 682 (1.8)	2224/102 919 (2.2)	0.85 (0.7–1.04)	0.123
30-day death, n/N (%)	162/11 658 (1.4)	2297/102 877 (2.2)	0.62 (0.49-0.78)	<0.001
Falsification end point				
GI/GU bleeding, n/N (%)	58/12 409 (0.5)	501/110 777 (0.5)	1.03 (0.75-1.42)	0.837

Odds ratios, 95% Cls, and Wald Chi-square *P* values obtained from unadjusted generalized estimating equations, accounting for with clustering by site. EPD indicates embolic protection device; GI/GU, gastrointestinal/genitourinary; and TIA, transient ischemic attack.

Neel M. Butala, et al. Circulation. 2021;143:2229–2240.

Cerebral Embolic Protection and Outcomes of TAVR

Observational study from STS/ACC TVT Registry

Table 3. Adjusted Association of Post-Transcatheter Aortic Valve Replacement Outcomes With Use of Cerebral Embolic Protection During Valve Implantation

	Instrumental variable analysis model					Propensity score-based model				
	EPD (%)	No EPD (%)	Absolute risk difference, % (95% Cl)	Adjusted relative risk (95% Cl)	P value	EPD (%)	No EPD (%)	Absolute risk difference, % (95% CI)	Adjusted odds ratio (95% Cl)	P value
Primary end point										
In-hospital stroke	1.39	1.54	-0.15 (-0.49 to 0.20)	0.90 (0.68–1.13)	0.414	1.3	1.58	-0.28 (-0.52 to -0.03)	0.82 (0.69–0.97)	0.018
Secondary end points		v		252	-	.17			w	
In-hospital stroke or death	2.38	2.55	-0.17 (-0.61 to 0.28)	0.93 (0.76–1.11)	0.466	2.14	2.52	-0.38 (-0.69 to -0.02)	0.84 (0.73–0.98)	0.026
In-hospital stroke or TIA	1.60	1.68	-0.07 (-0.44 to 0.29)	0.96 (0.74–1.17)	0.696	1.47	1.69	-0.22 (-0.46 to -0.05)	0.87 (0.75–1.01)	0.073
In-hospital death	1.07	1.16	-0.09 (-0.39 to 0.22)	0.92 (0.66–1.19)	0.576	0.94	1.09	0.15 (0.37 to 0.08)	0.86 (0.66–1.1)	0.231
Device success	97.03	97.23	-0.2 (-0.67 to 0.27)	1.00 (0.99–1.00)	0.405	97.37	97.3 <mark>4</mark>	0.03 (0.70 to 0.79)	1.01 (0.76, 1.35)	0.934
In-hospital major bleeding	4.76	4.33	0.43 (-0.15 to 1.02)	1.10 (0.97–1.24)	0.148	4.68	4.33	0.35 (0.27 to 0.76)	1.09 (0.95–1.24)	0.218
30-day stroke	1.97	2.14	-0.17 (-0.60 to 0.25)	0.92 (0.72–1.12)	0.416	1.92	2.24	-0.32 (-0.61 to -0.01)	0.85 (0.73–0.99)	0.038
30-day mortality	1.85	2.19	-0.34 (-0.76 to 0.08)	0.84 (0.65–1.04)	0.114	1.7	2.16	-0.46 (-0.78 to -0.14)	0.78 (0.64–0.95)	0.014
Falsification end point									·	
GI/GU bleeding	0.59	0.44	0.16 (-0.04 to 0.35)	1.34 (0.91–1.80)	0.11	0.58	0.46	0.13 (-0.05 to 0.35)	1.29 (0.92–1.81)	0.144

TCTAP 2023

Neel M. Butala, et al. Circulation. 2021;143:2229-2240.

Cerebral Embolic Protection During TAVR A Clinical Event Meta-Analysis

FIGURE 1 Clinical Outcom	mes in Patient	s Undergoir	ig TAVR With V	ersus Witl	hout Emb	olic Protection Devices			
				Deat	h or stro	ke			
	Embolic pr	rotection	No embolic	protection		Risk Ratio	Ris	k Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed (95% CI)	M-H, Fiz	xed, 95% CI	
CLEAN-TAVI	4	50	5	50	15.9%	0.80 (0.23-2.81)		<u> </u>	
DEFLECT-III	3	46	4	39	13.7%	0.64 (0.15-2.67)	· · · · · · · · · · · · · · · · · · ·	<u>.</u>	
EMBOL-X	0	14	0	16		Not estimable			
MISTRAL-C	1	32	6	33	18.7%	0.17 (0.02-1.35) -			
SENTINEL	16	234	12	111	51.7%	0.63 (0.31-1.29)	-	l and	
Total (95% CI)		376		249	100.0%	0.57 (0.33-0.98)			
Total events	24		27						
Heterogeneity: Chi ² = 1.	.68, df = 3 (P =	= 0.64); l ² =	0%					-l	i
Test for overall effect: 2	Z = 2.01 (P = 0	.04)				0.01	0.1	1 10	100
							Favors EP	Favors no EP	

Pooled effect estimates for the risk of death or stroke according to the use of cerebral embolic protection versus not during TAVR. CI = confidence interval; CLEAN-TAVI = Claret Embolic Protection and TAVI; DEFLECT-III = A Prospective, Randomized Evaluation of the TriGuard HDH Embolic Deflection Device During TAVI; EP = embolic protection; M-H = Mantel-Haenszel; MISTRAL-C = MRI Investigation With Claret; SENTINEL = Cerebral Protection in Transcatheter Aortic Valve Replacement; TAVR = transcatheter aortic valve replacement.

Giustino G, et al. J Am Coll Cardiol. 2017 Jan 31;69(4):465-466

Safety and efficacy of Cerebral Embolic Protection device undergoing TAVR

A meta-analysis of in-hospital outcomes

A Stroke

Junichi Shimamura et al. Cardiovasc Interv Ther. 2022;37(3):549-557

Safety and efficacy of Cerebral Embolic Protection device undergoing TAVR

A meta-analysis of in-hospital outcomes

B Mortality

Junichi Shimamura et al. Cardiovasc Interv Ther. 2022;37(3):549-557

Safety and efficacy of Cerebral Embolic Protection device undergoing TAVR

A meta-analysis of in-hospital outcomes

C Major bleeding

Junichi Shimamura et al. Cardiovasc Interv Ther. 2022;37(3):549-557

PROTECTED TAVR Trial

Patients undergoing commercial TF TAVR*, N=3000

*Patients of all risk categories eligible

Neurological[‡] exam in all patients pre-procedure

1:1

TAVR without CEP

TAVR with Sentinel

Neurological[‡] exam in all patients post-procedure

Primary endpoint: Stroke at 72h or Discharge Adaptive study design with interim analysis at 70% enrollment

*Any commercially available TAVR device; * Neurological examination at baseline, and post-procedure and through 72 hours after TAVR or discharge (whichever comes first), performed by a neurology professional (board certified/board eligible neurologist, neurology fellow, neurology physician assistant, or neurology nurse practitioner)

PROTECTED TAVR Trial

28th TCTAP 2023

PROTECTED TAVR Trial

Outcome	CEP (N=1501)	Control (N=1499)	Difference (95% CI)†
Clinical			
Primary end point: stroke — no. (%)	34 (2.3)	43 (2.9)	-0.6 (~1.7 to 0.5)
Disabling	8 (0.5)	20 (1.3)	-0.8 (-1.5 to -0.1)
Ischemic	6 (0.4)	17 (1.1)	-0.7 (-1.4 to -0.1)
Hemorrhagic	2 (0.1)	3 (0.2)	-0.1 (-0.4 to 0.2)
Nondisabling	26 (1.7)	23 (1.5)	0.2 (-0.7 to 1.1)
Ischemic	26 (1.7)	23 (1.5)	0.2 (-0.7 to 1.1)
Hemorrhagic	0	0	0
Death — no. (%)			
Any cause	8 (0.5)	4 (0.3)	0.3 (-0.2 to 0.7)
Cardiovascular cause	8 (0.5)	4 (0.3)	0.3 (-0.2 to 0.7)
Noncardiovascular cause	0	0	0
Safety composite end point: death from any cause or stroke	41 (2.7)	45 (3.0)	-0.3 (-1.5 to 0.9)
Neurologic composite end point: stroke, transient ischemic at- tack, or delirium — no. (%)	46 (3.1)	55 (3.7)	-0.6 (-1.9 to 0.7)
Stroke — no. (%)	34 (2.3)	43 (2.9)	-0.6 (-1.7 to 0.5)
Transient ischemic attack — no. (%)	1 (0.1)	2 (0.1)	-0.1 (-0.3 to 0.2)
Delirium — no. (%)	12 (0.8)	11 (0.7)	0.1 (-0.6 to 0.7)
Major or minor vascular complication at the CEP access site — no. (%)	1 (0.1)	0	0.1 (-0.1 to 0.2)
Stage 2 or 3 acute kidney injury ≤72 hours after TAVR — no. (%)	8 (0.5)	7 (0.5)	0.1 (-0.4 to 0.6)
Neurologic			
NIHSS total score:	0.4±1.8	0.4±1.2	0.1 (-0.1 to 0.2)
Modified Rankin scale score			
Mean score§	0.6±1.1	0.6±1.1	0.0 (-0.1 to 0.1)
Score of 0-1 no./total no. (%)	1221/1468 (83.2)	1247/1473 (84.7)	-1.5 (-4.1 to 1.2)‡
Score of ≥2 — no./total no. (%)	247/1468 (16.8)	226/1473 (15.3)	1.5 (-1.2 to 4.1)1

Stroke after SAVR vs. Transfemoral TAVR from the PARTNER Trial

Samir R. Kapadia et al, J Am Coll Cardiol. 2018;72:2415–26.

Stroke is Associated with a Major Reduction in 1-Year Survival after TAVR

1-Year Survival Following TAVR

Kapadia et al. Circ Cardiovasc Interv. 2016

PARTNER 1A Raised Concern of Increased Neurologic Risk of TAVR

Smith et al. N Engl J Med. 2011; 364:2187-98

SAVR vs. TF-TAVR 30-Day Neurologic Events

Early Phase Risk (<7 Days)

Samir R. Kapadia et al, J Am Coll Cardiol. 2018;72:2415–26.

Late Phase Risk (4 Years)

Instantaneous Risk Modeling

Samir R. Kapadia et al, J Am Coll Cardiol. 2018;72:2415–26.

Cumulative Incidence of Events

Adjusted for Competing Risk of Mortality

Samir R. Kapadia et al, J Am Coll Cardiol. 2018;72:2415–26.

Stroke Severity in TAVR vs SAVR : A Systematic Review and Meta-Analysis

Disabling and Non-disabling stroke 30 Days

TAVI versus SAVR - Disabling stroke 30 Days

TAVI versus SAVR - Non-disabling stroke 30 Days

	TAVI		SAVR		Favors	Favors	Weight	Odds Ratio
Study, Year	Stroke	Total	Stroke	Total	TAVI	SAVR		(95% CI)
Evolut, 2019	3	734	7	734			9.24%	0.43 [0.11, 1.65]
Partner3, 2019	0	503	2	497			2.22%	0.20 [0.01, 4.11]
Surtavi, 2017	10	879	19	867) — •	4	19.73%	0.51 [0.24, 1.11]
Partner2A, 2016	32	1011	43	1021	⊢•		30.10%	0.74 [0.47, 1.18]
CoreValueUS, 2014	15	394	11	401	H	•	19.20%	1.40 [0.64, 3.09]
Staccato, 2012	3	34	1	36		•	3.69%	3.39 (0.33, 34.27)
Partner, 2011	13	348	7	351	,	••	15.81%	1.91 [0.75, 4.84]
Heterogeneity: $\tau^2 = 0.13$, χ^2	= 9.65, P = 0.	14, J ² = 37	7.0					
Test for overall effect: z = -0	0.52, P = 0.60				-	-	100.00%	0.88 [0.56, 1.41]
					<u>г г</u>	i ı		
				0.	05 0.25	1 4		
					Risk Ratio (9	5% CI)		

	TAVI		SAVR			Favors	Favo	s	Weight	Odds Ratio
Study, Year	Stroke	Total	Stroke	Total		TAVI	SAV	R	1.000	(95% CI)
Evolut, 2019	14	734	8	734			•		18.65%	1.76 [0.74, 4.23]
Partner3, 2019	3	503	9	497	٠	•	-		11.74%	0.33 (0.09, 1.21)
Surtavi, 2017	18	879	24	867		H	•		24.39%	0.73 [0.40, 1.36]
Partner2A, 2016	23	1011	18	1021		0	••••		24.28%	1.30 [0.70, 2.42]
CoreValueUS, 2014	4	394	12	401		•	-		14.04%	0.33 [0.11, 1.04]
Staccato, 2012	0	34	0	36	•		+		1.85%	1.06 [0.02, 54.81]
Partner, 2011	3	348	1	351				•	5.05%	3.04 [0.32, 29.40]
Heterogeneity: $\tau^2 = 0.22$, χ^2	= 10.35, P = 0	.11, I ² = 4	16.8							
Test for overall effect: z = -0	.48, P = 0.63					-	-		100.00%	0.87 [0.50, 1.52]
					r	1	1	٦		
				0	05	0.25	1	4		
					0	ids Ratio (95% CI)			

Disabling and Non-disabling stroke 1 Year

TAVI versus SAVR - Disabling stroke - One Year

TAVI versus SAVR - Non-disabling stroke - 1 Year

	TAVI		SAVR			Favors	Favora	Weight	Odds Ratio
Study, Year	Stroke	Total	Stroke	Total		TAVI	SAVR	2. weeda	(95% CI)
Evolut, 2019	6	734	15	734		.		12.95%	0.40 [0.15, 1.02]
Partner3, 2019	1	503	4	497	•	•	-	3.52%	0.25 [0.03, 2.20]
Surtavi, 2017	19	879	32	867				21.39%	0.58 (0.32, 1.03)
Partner2A, 2016	49	1011	56	1021		H	F	26.73%	0.88 [0.59, 1.30]
CoreValueUS, 2014	22	394	23	401		F	•	20.67%	0.97 (0.53, 1.77)
Partner, 2011	17	348	8	351			•••	14.75%	2.20 (0.94, 5.17)
Heterogeneity: $x^2 = 0.14$, χ^2	² = 10.42, P = 0	.06, l ² = 5	54.3						
Test for overall effect: z = -	0.96, P = 0.34					-	-	100.00%	0.81 [0.52, 1.25]
					r	1	i		
				9	0.05	0.25	1 4		
					R	isk Ratio (9	5% CI)		

	TAVI		SAVR			Favors	Favors	Weight	Odds Ratio
Study, Year	Stroke	Total	Stroke	Total		TAVI	SAVR	00.0570.0	(95% CI)
Evolut, 2019	24	734	18	734		,		21.08%	1.34 [0.72, 2.50
Partner3, 2019	5	503	10	497				8.08%	0.49 [0.17, 1.44
Surtavi, 2017	27	879	29	867		-	•	26.55%	0.92 [0.54, 1.56
Partner2A, 2016	30	1011	24	1021		,		25.75%	1.27 (0.74, 2.19
CoreValueUS, 2014	11	394	20	401				15.46%	0.55 [0.26, 1.16
Partner, 2011	з	348	2	351		+	•••	3.09%	1.52 (0.25, 9.14
Heterogeneity: $\tau^2 = 0.03$, $\chi^2 =$	6.08, P = 0.1	30, I ² = 16	5.6						
Test for overall effect: z = -0.2	3, P = 0.82						÷	100.00%	0.96 [0.70, 1.33
					r—	-	1 1		
					0.05	0.25	1 4		
					0	ids Ratio (9	5% CI)		

Combined Sub-Group Analysis

	No. of patients	TAVI	SAVR	Favours Favour Int Control	OR (95% CI)	P for Interaction
Disabling Stroke 30 days						
Overall	7810	76	90	F	0.88 [0.56, 1.41]	
Later Studies	6246	45	71	⊨ ∎ →	0.64 [0.44, 0.93]	0.01
Earlier Studies	1564	31	19	H	1.67 [0.93, 3.00]	
Transfemoral >90%	4214	13	28	⊢ ∎	0.47 [0.24, 0.91]	0.03
Transfemoral <90%	3596	63	62	H	1.21 [0.68, 2.16]	
Disabling Stroke 1 year						
Overall	7740	114	138		0.81 [0.52, 1.25]	
Later Studies	6246	75	107	⊢∎ <u> </u>	0.64 [0.42, 0.99]	0.095
Earlier Studies	1494	39	31	▶	1.38 [0.62, 3.05]	
Transfemoral >90%	4214	26	51		0.50 [0.31, 0.81]	0.01
Transfemoral <90%	3526	88	87	⊢ ∔•───1	1.09 [0.70, 1.69]	
Non-Disabling Stroke 30 days						
Overall	7810	65	72	J	0.82 [0.45, 1.49]	
Later Studies	6246	58	59	F	0.97 [0.56, 1.66]	0.79
Earlier Studies	1564	7	13	▶	0.77 [0.15, 3.90]	
Transfemoral >90%	4214	35	41	⊢ •-	0.82 [0.36, 1.89]	0.84
Transfemoral <90%	3596	30	31	⊢	0.93 [0.34, 2.52]	
Non-Disabling Stroke 1 year						
Overall	7740	105	107	⊢	0.98 [0.72, 1.32]	
Later Studies	6246	91	85	1	1.07 [0.79, 1.45]	0.23
Earlier Studies	1494	14	22	→	0.65 [0.31, 1.37]	
Transfemoral >90%	4214	61	61	⊢	1.00 [0.69, 1.43]	0.87
Transfemoral <90%	3526	44	46	⊢	0.94 [0.48, 1.83]	
				,		
				0 0.75 1.5 2.25 3		

Conduction Disturbance

Туре

- Left Bundle Branch Block
- AV Conduction Disturbances
- Complete Heart Block

Depth of Implantation

15mm past annulus

5mm past annulus

CoreValve Meta-analysis : PPM

1. Meredith IT. The Australia-New Zealand Medtronic CoreValve[®] Registry: outcomes in inoperable and high risk AS patients. Presented at: TCT. 2010. 2. Avanzas P, et al. *Rev Esp Cardiol*. 2010;63:141-148.

- 3. Eltchaninoff H. French Registry. TAVI facts, figures and national registries. Presented at: EuroPCR; May 25-28, 2010; Paris, France.
- 4. Bosmans J. Belgian Registry. TAVI facts, figures and national registries. Presented at: EuroPCR; May 25-28, 2010; Paris, France.
- 5. Zahn R. German Registry. TAVI facts, figures and national registries. Presented at: EuroPCR; May 25-28, 2010; Paris, France.
- 6. Ludman P. UK Registry. TAVI facts, figures and national registries. Presented at: EuroPCR; May 25-28, 2010; Paris, France.
- 7. Petronio AS. Italian Registry. TAVI facts, figures and national registries. Presented at: EuroPCR; May 25-28, 2010; Paris, France.
- 8. Ruiz CE, et al. Weighted meta-analysis of early and late clinical outcomes after CoreValve[®] TAVI in seven national registries. Presented at: EuroPCR; May 17-20, 2011; Paris, France. Analysis funded by Medtronic, Inc.

Conduction Disturbance

Incidence of new-onset left bundle-branch block (LBBB)

Vincent Auffret et al, Circulation. 2017;136:1049–1069.

Pacemakker Implantation After Balloon- or Self-Expandable TAVR

Figure. Incidence of permanent pacemaker implantation in patients treated with TAVR, according to type and generation of device.

BE indicates balloon-expandable; Early BE, Edwards Sapien XT; Early SE, Medtronic Corevalve; Latest BE, Edwards Sapien 3; Latest SE, Medtronic Evolut; SE, self-expandable; and TAVR, transcatheter aortic valve replacement.

- BE technology was independently associated with lower incidence rates of PPI both at the acute and chronic phases than SE technology.
- Recent generations of TAVR were not independently associated with different rates of PPI than early generations during the overall follow-up.

Para-valvular Leak

Mechanism

- Prosthesis expansion
 - Geometry and degree of apposition
- Prosthesis apposition
 - Larger coronal/sagittal annulus diameter
 - Higher calcium score/Heavily calcified commissure
 - More ellipsoid valves
- Inadequate prosthesis size
 - Prosthesis-annulus cover index
 - = 100 X (prosthesis TEE annulus) diameter

prosthesis diameter

• Improper prosthesis positioning

Mechanism of PVL

Sinning JM et al., JACC 2012

Incidence, Predictors, and Outcomes of AR after TAVR

Meta-analysis of 45 studies involving 12,926 patients treated with CoreValve (n = 5,261) or Edwards valves (n = 7,279).

- Incidence of moderate/severe AR was 11.7%
- More common with CoreValve than with Edwards(16.0% vs. 9.1%; P = 0.005)
- Moderate/severe AR increased mortality at 30 days (OR 2.95; 95% CI 1.73-5.02) and 1 year (HR 2.27; 95% CI 1.84-2.81)
- Even mild AR was linked to mortality in some studies
- Predictors of moderate/severe AR were valve undersizing, aortic valve calcification, and implantation depth

Implications: Aortic regurgitation is fairly common after TAVR and appears to increase mortality even when mild.

SOURCE 3 : 1yr outcome PVL (mod-severe) for 1yr mortality : HR 0.09 (0.00, NA), p = 0.97

Wendler O et al. EHJ 2017 Jun. Epub ahead of print

Association of PVL with 1-year Outcomes After TAVR with the Sapien 3 valve

Philippe Pibarot, DVM et al. JAMA Cardiol. 2017;2(11):1208-1216

C Death and rehospitalization

D Valve reintervention

Mild

Vascular Complication

Туре

- Posterior wall puncture / High stick
- Dissection
- Perforation
- **Closure device failure**
- Foreign body embolization

Potential Risk Factors

- Operator related : poor screening, Aggressive manipulation, Not prepared for complication
- Patient related : Vessel size, Tortuousity, Calcification, Atherosclerosis
- Device related : Sheat size, Delivery system, Wire, Pacemaker, BAV balloon, Closure device

Coronary Obstruction

Possible Causes

- LMT ostium close to the annulus
- Bulky calcific deposit on left cusp
- Long left location of the LMT ostium
- Narrow aortic root with shallow sinuses of valsalva
- Oversized valve
- Pliable, minimally calcific left leaflet
- Proximal septal bulge
- Aortic atherosclerosis near to the ostium
- Embolism
- Improper valve position

Risk of Coronary Obstruction Multifactorial

- Women
- Low Coronary Height (<10mm to <12mm)
- Shallow Sinus of Valsalva (<30mm)
- Long Leaflet
- Left Coronary Artery
- Bulky Calcification
- Valve Implantation Height
- Device (Balloon Expandable)

Yamamoto M, et al. Int J Cardiol. 2016 May 4;217:58-63 Riberiro HB, et al. J Am Coll Cardiol. 2013 Oct 22;62(17):1552-62

Aortic Root Scenarios

Wide and Low

Shallow and Low

Interventional Cardiology Review, 2015;10(2):94–7

Infective Endocarditis

Incidence <1% \bullet

(similar to that of endocarditis following Location of Infective Endocarditis surgical AVR)

 \bullet Microbiology

Coagulase-negative Staphlococci (25%)

- S. aureus (21%), Enterococci (21%)
- S. viridans (6%), Unknown (4%)
- Management and outcomes Valve intervention (11%), surgical valve implantation (8%), Valve-in-valve (4%), In-hospital death (47%), Cumulative death (72%)

*AA; Ascending Aorta LA: Left Atrium **RA: Right Atrium**

Amat-Santos et al., Circulation . 2015;131:1566-1574

Antithrombotics after TAVR

ARTE Trial Aspirin alone vs. Aspirin + clopidogrel

Josep Rodes-Cabau et al. 2017 EuroPCR

ARTE Trial Aspirin alone vs. Aspirin + clopidogrel

Josep Rodes-Cabau et al. 2017 EuroPCR

ARTE Trial Aspirin alone vs. Aspirin + clopidogrel

Josep Rodes-Cabau et al. 2017 EuroPCR

POPular TAVI Trial Aspirin alone vs. Aspirin + clopidogrel

POPular TAVI Trial Aspirin alone vs. Aspirin + clopidogrel

J. Brouwer et al. 2020 N Engl J Med. 2020;383:1447-57

POPular TAVI Trial Aspirin alone vs. Aspirin + clopidogrel

J. Brouwer et al. 2020 N Engl J Med. 2020;383:1447-57

Leaflet Thrombosis

Neurological injury after TAVR From Neuro-TAVI trial

Alexandra J. Lansky and John K. Forrest et al. Am J Cardiol 2016.

Excised TAVR with thrombosis

Subclinical Leaflet Thrombosis In <u>Bioprosthetic Aortic Valves</u>

Implications: Reduced aortic-valve leaflet motion was shown in patients with bioprosthetic aortic valves and was easily detected noninvasively by four- dimensional, volume-rendered CT.

R.R Makkar and L. Sondergaard et al. NEJM 2015

Abnormal Leaflet Findings in Bioprostheses

Authors	Diagnostic Method	Procedure	Finding	Patients, n	Finding, n (%)	Comment
Makkar et al ¹	MDCT	TAVR	Reduced leaflet motion	55	22 (40)	Surveillance
	MDCT	SAVR	Reduced leaflet motion	132	17 (13)	For cause
De Marchena et al4	Autopsy/surgery	TAVR	Valve thrombosis	4	4 (100)	For cause
Leetmaa et al7	MDCT	TAVR	Valve thrombosis	140	5 (4)	Surveillance
Brown et al11	Surgery	SAVR	Valve thrombosis	4568	8 (0.2)	For cause
Egbe et al ⁸	Surgery	SAVR	Valve thrombosis		46	For cause
Del Trigo et al16	TTE	TAVR	Valve hemodynamic deterioration	1521	68 (4.5)	Surveillance
Jander et al18	TTE	SAVR	Valve hemodynamic deterioration	1751	17 (1)	Surveillance
Vemulapalli et al19	TTE	TAVR	Valve hemodynamic deterioration	10099	212 (2.1)	Surveillance, 30 d
	TTE	TAVR	Valve hemodynamic deterioration	3175	79 (2.5)	Surveillance, 1 y
Latib et al15	TTE	TAVR	Valve thrombosis	4266	26 (0.61)	Surveillance, mean 181 d
Pache et al ²⁷	MDCT	TAVR	HALT	156	16 (10.3)	Surveillance
Hansson et al ²⁸	MDCT	TAVR	HALT	405	28 (7)	Surveillance

Reduced leaflet motion

At least 50% restriction of leaflet motion of at least 50%

Normal leaflet motion

Reduced leaflet motion

Chakravarty T, et al. Lancet. 2017 Mar 19. [Epub ahead of print]

Hypothetical Natural History of Transcatheter Valve Thrombosis

Predictors of Clinical Transcatheter Valve Thrombosis

	Odds Ratio (95% CI)	p Value
Male	0.7 (0.2-2.1)	0.53
Age >80 yrs	0.8 (0.3-2.2)	0.65
Systemic hypertension	1.1 (0.3-4.5)	0.85
Atrial fibrillation	1.8 (0.4-7.1)	0.43
Type 2 diabetes mellitus	0.2 (0.1-1.1)	0.06
Obesity (BMI >30 kg/m ²)	4.6 (1.6-13.1)	0.005
Presence of coronary artery disease	0.8 (0.3-2.3)	0.68
Antiplatelet therapy alone	79.1 (3.1-1,994.5)	0.008
Use of balloon-expandable valve	8.0 (2.1-29.7)	0.002
Valve-in-valve procedure	17.1 (3.4-84.9)	0.001
Pre-dilatation	0.9 (0.3-2.8)	0.81
Post-dilatation	1.2 (0.3-4.7)	0.76

Anticoagulation vs. DAPT

Chakravarty T, et al. Lancet 2017.

Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves

Evidence of Reduced Leaflet Motion in Multiple Prosthesis Types

Makkar RR et al. N Engl J Med 2015;373:2015-2024

Recurrence of Reduced Leaflet Motion Following Discontinuation of anticoagulation

Baseline Reduced leaflet motion

s/p Xarelto 10mg Normal leaflet motion

Six months following discontinuation of x arelto Reduced leaflet motion

Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study

Study Design

Chakravarty T, et al. Lancet. 2017 Mar 19. [Epub ahead of print]

Prevalence of reduced leaflet motion

Transcatheter vs. surgical bioprosthetic aortic valves: p=0.001

Chakravarty T, et al. Lancet. 2017 Mar 19. [Epub ahead of print]

Anticoagulation and Reduced Leaflet Motion

Anticoagulation vs. no anticoagulation

Anticoagulation and Reduced Leaflet Motion

Anticoagulation vs. Antiplatelet therapy

Impact of Initiation of Anticoagulation on Reduced Leaflet Motion

Resolution in 36 out of 36 patients treated with anti coagulation (NO ACs, n=12; warf arin, n=24)
Persistence/progres sion in 20 out of 22 patients not treated

with anticoagulati

P<0.0001

on

Impact of Discontinuation of Anticoagulation Following Resolution of Reduced Leaflet Motion

tion recurred in 4 o ut of 8 patients in whom anticoagulat ion was discontinu

Reduced leaflet motion did not re cur in the 15 pati ents who were co ntinued on antico **P=0.008**

Impact of Reduced Leaflet Motion on Valve Hemodynamics

Increased mean gradients at the time of CT in patients with reduced leaflet motion

 13.8 ± 10.0 mmHg vs. 10.4 ± 6.3 mmHg, p=0.0004

Increased Gradients in patients with Reduced Leaflet Motion

TCTAP 2023

Chakravarty T, et al. Lancet 2017.

Impact of Reduced Leaflet Motion on Clinical Outcomes

Only Non-Procedural Events (>72 Hours Post-TAVR/SAVR) included

	Normal leaflet motion (N=784)		Reduced leaflet motion (N=106)			
	n/N (%)	Rate per 100 person-years	n/N (%)	Rate per 100 person-years	Hazard ratio (95% CI)	p-value
Non-procedural events						
Death	34/784 (4·3%)	2.91	4/106 (3.8%)	2.66	0.96 (0.34-2.72)	0.94
Myocardial infarction	4/784 (0.5%)	0.34	1/106 (0.9%)	0.67	1.91 (0.21-17.08)	0.56
Strokes/TIAs	20/784 (2.6%)	1.75	8/106 (7.6%)	5.71	3.30 (1.45-7.50)	0.004
All strokes*	15/784 (1.9%)	1.31	4/106 (3.8%)	2.75	2.14 (0.71-6.44)	0.18
Ischemic strokes	14/784 (1.8%)	1.22	4/106 (3.8%)	2.75	2.29 (0.75-6.97)	0.14
TIAs	7/784 (0.9%)	0.60	5/106 (4.7%)	3.48	5.89 (1.87-18.60)	0.002

• No significant difference in strokes; but increased risk of TIAs and strokes/TIAs

TIA=Transient ischemic attack/ * All strokes include hemorrhagic and ischemic strokes

Riveroxeban vs. DAPT after TAVR GALILEO Study

Primary end-point is death, MI, stroke, non-CNS systemic emboli, symptomatic valve thrombosis, deep vein thrombosis or pulmonary embolism, major bleedings over 720 days of treatment exposure.

Riveroxeben vs. DAPT after TAVR GALILEO Study

Primary Efficacy Outcomes

Death, stroke, MI, symptomatic valve thrombosis, PTE, DVT, systemic embolism

Riveroxeben vs. DAPT after TAVR GALILEO Study

Riveroxaban vs. DAPT after TAVR GALILEO Study

Primary Safety Outcomes

VARC life-threatening, disabling, or major bleeding

Apixaban vs. VKA vs. DAPT after TAVR ATLANTIS Study

Primary end-point is a composite of death, MI, stroke, systemic emboli, intracardiac or bioprosthesis thrombus, episode of deep vein thrombosis or pulmonary embolism, major bleedings over one year follow-up.

TCTAP 2023

Apixaban vs. VKA vs. DAPT after TAVR

The ATLANTIS trial

Jean-Philippe Collet et al. Eur Heart J 2022;43:2783-2797

■ DEATH, %/yr ■ MAJOR BLEED, %/yr ■ NONFATAL STROKE, %/yr ■ VALVE THROMBOSIS, % at 3-6 mos

Graphical Abstract Major outcomes of randomized controlled trials investigating direct oral anticoagulants in patients undergoing successful TAVI. 'Non-fatal stroke' refers to ischaemic stroke in GALILEO⁵ and ENVISAGE-TAVI AF,⁶ and to any stroke/transient ischaemic attack/systemic embolism in ATLANTIS.¹³ 'Valve thrombosis' refers to RLM of >50% of \geq 1 leaflet(s) (i.e. grade 3–4) in GALILEO,⁸ to transprosthetic mean gradient \geq 20 or \geq 10 mmHg above previous measurements or HALT/RLM grade 3–4 in ATLANTIS,¹³ and to thrombosis of haemodynamic relevance, symptomatic or completely reversible by high-intensity anticoagulation or to HALT/RLM or transprosthetic mean gradient \geq 20 or \geq 10 mmHg above previous measurements in ENVISAGE-TAVI AF.⁶ Apix = apixaban; APT = antiplatelet therapy alone; bid = twice daily; Edox = edoxaban; HALT = hypo-attenuated leaflet thickening; od = once daily; Riva = rivaroxaban; RLM = reduced leaflet motion; VKA = vitamin K antagonist.

TCTAP 2023

Felicita Andreotti et al. Eur Heart J 2022;43:2798-2800

ADAPT-TAVR Trial

Anticoagulant versus Dual Antiplatelet Therapy for Preventing Leaflet Thrombosis and Cerebral Embolization After Transcatheter Aortic Valve Replacement

Treatment Group

Edoxaban group

: Take 60 mg of edoxaban (Lixiana, Daiichi Sankyo, Korea) once daily for at least 6 months
: 30mg once a day if Wt ≤ 60kg, renal insufficiency (15 ≤ CrCL ≤ 50 mL / min)

DAPT group

: Take aspirin (75-100 mg) and clopidogrel (75 mg) once daily for at least 6 months

Cardiac CT imaging

- For all patients enrolled in this trial, CT (four-dimensional, volumerendered) will be performed at 6 months (± 1 month) after the index TAVR procedure to confirm the
- presence of the leaflet thrombosis of THV
- quantitative assessment of leaflet motion

 Leaflet motion; defined as normal, mildly reduced (<50% reduction), moderately reduced (50 to 70% reduction), severely reduced (>70% reduction), or immobile (lack of motion in at least one valve leaflet) in at least one valve leaflet

Brain MRI imaging

 For all patients enrolled in this trial, diffusion weighted (DW) brain MRI imaging using a 3-T scanner will be performed at 1-7 days and 6 months post-TAVR procedure

 Follow-up MRI imaging will be matched with immediate post-TAVR scans, and subtraction analyses are performed to identify new lesions in the entire brain. MRI outcomes included calculation of number and volume of new DWIs (postprocedure – 6 months) by subtraction of the existing baseline lesions in the whole brain.

Neurological and neurocognitive function assessment

All study subjects will undergo detailed neurologic and cognitive
 assessment at 1-7 days (baseline) and 6 months post-TAVR procedure

 Neurologic assessments included standard clinical scales (the National Institutes of Health Stroke Scale [NIHSS] and the modified Rankin Scale [mRS]), and cognitive assessments included the Montreal Cognitive Assessment (MoCA).

CT End Points

A CT End Points, Intention-to-Treat Analysis

MRI End Points

B MRI End Points, Intention-to-Treat Analysis

TCTAP 2023

Neurological or Neurocognitive Function End Points

C Neurological or Neurocognitive Function End Points, Intention-to-Treat Analysis

Bicuspid aortic valve

BAV burden in patients referred for TAVR

Incidence of Bicuspid AV in AVR

250 42% Bicuspid (49%) 198 **TAVR Age** 200 Tricuspid (45%) 155 149 ■ Others (6%) 150 28% 98 93 100 74 50 38 30 25 15 9 8 6 110 20 2 0 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 Age (Year)

584 men and 348 women from USA (Baylor University)

28th TCTAP 2023

Roberts WC et al. Circulation 2005;111:920-925

Frequency of Bicuspid AV in TAVR registry

TAVR challenges in BAV

Anatomical

- Annular eccentricity
- Asymmetrical heavy valve calcification
- Unequally-sized leaflets
- Calcified raphe
- Concomitant aortopathy

Procedural

- Elliptical deployment
- Impaired Bioprosthesis Durability
- Residual Aortic Regurgitation
- Annulus Rupture
- Coronary Obstruction
- Aortic Complication

Zhao ZG et al. Nat. Rev. Cardiol 2015;12:123-128

Classification of BAV anatomy

Inter-ethnic differences in BAV

	European	Asian
Morphology of BAV	(n = 794)	(n = 633)
Туре 0	115 (14.5)	43 (6.8)
Type 1L+R	544 (68.5)	424 (67.0)
Type 1 R+N	108 (13.6)	125 (19.7)
Type 1 L+N	22 (2.8)	38 (6.0)
Type 2	5 (0.6)	3 (0.5)

WKF Kong et al. European Heart Journal 2018;39:1308–1313

Classification of BAV anatomy

28th TCTAP 2023

Spectrum of BAV Disease

28th TCTAP 2023

BAV Aortopathy

Aortic Dilatation (Tubular Portion)

Itagaki S et al. JACC 2015 Jun 9;65(22):2363-9

Kim YG et al. 2012 Dec;98(24):1822-7

BAV Aortopathy

28th TCTAP 2023

CT sizing strategy and transcatheter valve design choice in BAV

Flvien Vincent et al. Circulation 2021;143:1043-1061

ČVRF
Outcomes of observational study of TAVR in BAV patients

	Bauer (N=38)	Kochman (N=28)	Yousef (N=108)	Mylotte (N=139)	Jilaihawi (N=130)
Age, years	81	78	76	78	77
Mean STS score (%)	-		-	4.9	4.7
Type of Valve (%)					-
Balloon Expandable	32	18	56	28	54
Self Expandable	68	82	44	72	46
New Pacemaker (%)	17	29	19	23	26
PVL>mild (%)	25	32	31	28	18
30-day Stroke (%)	0	0	2.8	2.2	3.2
30-day Survival (%)	89	96	92	95	96

Bauer T et al. Am J Cardiol. 2014 ;113:518-21 Yousef et al. Int J Cardiol 2015;189:282-8 Jilaihawi et al. JACC:Cardiovascular Imaging 2016;9:1145-58

Kochman et al. Am J Cardiol. 2014;114:757-62 Mylotte al. J Am Coll Cardiol 2014 ;64:2330 9:1145-58

Outcomes of observational study of TAVR in BAV patients

	Liao (N=87)	Elbadawi (N=1055)	Makkar (N=2726)	Halim (N=5412)	Forrest (N=932)	Yoon (N=1034)
Age, years	73	68	73	74	73	75
Mean STS score (%)	7.9	-	4.9	3.8	5.3	3.7
Type of Valve (%)		-				
Ballon Expandable	0	-	100	81	0	72
Self Expandable	100	-	0	19	100	24
New Pacemaker (%)	24	14	9	-	15	12.2
PVL>mild (%)	14	-	2	4	6	3.4
Stroke (%)	1.1	1.9	2.5	2.2	3.4	2.7
30-day Survival (%)	90.8	97.1	97.4	98	97.4	98

Liao et al. Int J Cardiology 2018;254:69-74 Elbadawi et al. JACC Cardiovasc interv.2019;12:1811-1822 Makkar et al. JAMA 2019;321:2193-2202 Halim et al. Circulation 2020;141:1071-1079 Forrest et al. JACC Cardiovasc interv.2020;13:1749-1759 Yoon et al. J Am Coll Cardiol 2020;76:1018-1030

TCTAP 202

A total of 576 patients with bicuspid AS consecutively treated with TAVR were enrolled from 33 centers. For the purpose of this study, da from 4,546 patients with tricuspid AS consecutively undergoing TAVR were collected from 12 participating centers. After propensity score matching, 546 patients with bicuspid and tricuspid AS were compared. AS = aortic valve stenosis; PS = propensity score; TAVR = transcatheter aortic valve replacement.

1012 TCTAP 2023

TCTAP 2023

Procedural and Clinical Outcomes in Transcatheter Aortic Valve Replacement for Bicuspid Versus Tricuspid Aortic Valve Stenosis

Within the group receiving early generation devices, bicuspid AS had more frequent

- aortic root injury when receiving the Sapien XT (4.5% vs. 0.0%; p=0.015)
- Moderate to severe PVL when receiving the CoreValve (19.4% vs. 10.5%; p=0.02)
- Among patients with new generation devices, procedural results were comparable across different prostheses.

2-year outcomes of Bicuspid vs. Tricuspid

28th TCTAP 2023

2 Year Mortality of TAVR

Yoon SH, et al. J Am Coll Cardiol. 2017 2017 Mar 15. pii: S0735-1097(17)36041-2

Early vs. New Generation Device

30-Day Outcomes

Yoon SH, Ahn JM, Park SJ et al. JACC 2016;68(11):1195-20

Paravalvular Leakage

Annular Rupture

New Permanent Pacemaker

Outcomes of TAVR with Sapien3 Valve in Bicuspid Aortic Stenosis: An analysis of the STS/ACC TVT Registry

STS/ACC TVT Registry Background & Objective

- Bicuspid aortic valve accounts for up to 50% of patients requiring surgical aortic valve replacement in the younger population¹
- As TAVR becomes a therapeutic option for younger and healthier patients, bicuspid aortic valves will be seen more often.
- Pivotal clinical trials, including the low risk trials enrolling younger patients, have excluded patients with bicuspid aortic valves.
- We sought to compare the outcomes of TAVR with balloon-expandable SAPIEN 3 valve in native bicuspid versus tricuspid aortic valve stenosis in the real-world ST S/ACC TVT Registry.

STS/ACC TVT Registry Study Population

92236 SAPIEN 3 TAVRs in STS/ACC TVT Registry

(June 2015 - Nov 2018) 552 Sites

2726 Bicuspid AS SAPIEN 3 Patients

79096 Tricuspid AS SAPIEN 3 Patients

STS/ACC TVT Registry Baseline Characteristics – Unadjusted

Characteristic % or mean ± SD	Bicuspid AS (n=2726)	Tricuspid AS (n=79096)	p-value
Age (years)	72.8 ± 10.74	80.8 ± 8.10	<0.0001
STS Risk Score (%)	4.9 ± 3.96	6.5 ± 4.60	<0.0001
Male	60.4	55.1	<0.0001
NYHA III/IV	74.3	75.4	0.2
BMI (kg/m ²)	29.2 ± 7.64	29.0 ± 7.25	0.13
Hypertension	84.1	91.2	<0.0001
Diabetes	35.7	38.8	0.001
Peripheral Arterial Disease	24.1	27.6	<0.0001
Carotid Stenosis	14.8	25.2	<0.0001
Atrial Fibrillation	28.8	38.7	<0.0001
Prior Stroke	10.2	11.5	0.04
Chronic Lung Disease	41.5	40.1	0.13
Prior PCI	25.2	34.0	<0.0001
Prior CABG	15.7	20.8	<0.0001
PorcelainAorta	2.7	3.4	0.052
GFR (mL/min/1.73 m ²)	65.3 ± 28.69	59.3 ± 24.45	<0.0001
5MWT (seconds)	7.5 ± 4.16	8.4 ± 5.44	<0.0001

STS/ACC TVT Registry Study population

Age	Chronic Lung Disease
Gender (male)	Prior PCI
NYHA III/IV	Prior CABG
BMI	Porcelain Aorta
Hypertension	Mean Gradient
Diabetes	LVEF
Creatinine ≥ 2	Mitral Regurgitation
Peripheral Arterial Disease	Tricuspid Regurgitation
Carotid Stenosis	5 Meter Walk Test
Atrial Fibrillation	Access Site
Prior Stroke	KCCQ
Immunocompromised	Hemoglobin
GFR	

STS/ACC TVT Registry Baseline Characteristics – Matched

Characteristic % or mean ± SD	Bicuspid AS (n=2691)	Tricuspid AS (n=2691)	p-value
Age (years)	73.1 ± 10.46	72.9 ± 10.95	0.47
STS Risk Score (%)	4.9 ± 3.96	5.1 ± 4.18	0.09
Male	60.3	61.5	0.35
NYHA III/IV	74.4	74.1	0.83
BMI (kg/m ²)	29.2 ± 7.62	29.4 ± 7.40	0.30
Hypertension	84.5	84.2	0.80
Diabetes	35.8	36.8	0.43
Peripheral Arterial Disease	24.3	24.5	0.90
Carotid Stenosis	15.0	15.6	0.63
Atrial Fibrillation	29.0	29.4	0.73
Prior Stroke	10.2	10.2	0.96
Chronic Lung Disease	41.7	42.0	0.79
Prior PCI	25.5	26.6	0.34
Prior CABG	15.9	17.2	0.18
PorcelainAorta	2.7	3.1	0.37
GFR (mL/min/1.73 m ²)	65.0 ± 28.42	64.4 ± 27.15	0.39
5MWT (seconds)	7.6 ± 4.17	7.6 ± 3.91	0.79

STS/ACC TVT Registry Methods

- Primary end-point: Mortality and Stroke at 30-days and 1-year.
- Secondary end-point: Procedural complications, in-hospital adverse events, post-procedural echocardiographic assessment of the valve, functional status and health status at 30 days and 1 year.
- To compare death and stroke between bicuspid and tricuspid cohorts, the patie nts in the study cohort were linked with Centers for Medicare and Medicaid Ser vices (CMS) claims data, in addition to the follow-up obtained from the TVT reg istry.

STS/ACC TVT Registry Baseline Echo

Characteristic % or mean ± SD	Bicuspid AS (n=2691)	Tricuspid AS (n=2691)	p-value
AV Mean Gradient (mmHg)	45.2 ± 14.99	44.9 ± 15.20	0.51
AV Area (cm ²)	0.705 ± 0.2295	0.714 ± 0.2119	0.15
LVEF (%)	53.5 ± 14.73	52.5 ± 14.95	0.02
Annular Size (mm)	25.076 ± 3.1969	24.632 ± 3.0372	<0.0001
Mitral Regurgitation (mod/sev) (%)	20.6	21.7	0.39
Tricuspid Regurgitation (mod/sev)(%)	14.0	14.1	0.86

STS/ACC TVT Registry Procedural Data

Characteristic %	Bicuspid AS (n=2691)	Tricuspid AS (n=2691)	p-value
Transfemoral access	93.6	93.9	0.65
Conscious Sedation	42.8	44.1	0.33
Valve Size			<0.0001
20mm	2.7	3.1	0.33
23mm	23.0	28.5	<0.0001
26mm	39.1	42.0	0.03
29mm	35.2	26.4	<0.0001

STS/ACC TVT Registry Procedural Outcomes

Characteristic % or mean ± SD	Bicuspid AS (n=2691)	Tricuspid AS (n=2691)	p-value
Device success	96.5	96.6	0.87
Procedure Time, min	100.7 ± 51.80	98.2 ± 52.09	0.08
Fluoroscopy Time, min	18.5 ± 10.96	17.1 ± 10.17	<0.0001
Conversion to open surgery	0.9	0.4	0.03
Annulus Rupture	0.3	0.0	0.02
Cardiopulmonary bypass	1.4	1.0	0.13
Aortic dissection	0.3	0.1	0.34
Coronary Obstruction	0.4	0.3	0.34
Need for a second valve	0.4	0.2	0.16

STS/ACC TVT Registry 30-Day Outcomes

KM estimate %	Bicuspid	Tricuspid AS	p-value
All-cause mortality	2.6	2.5	0.82
All stroke	2.4	1.6	0.02
Life-threatening bleeding	0.1	0.1	0.99
Major vascular complication	0.9	1.0	0.68
New pacemaker	9.1	7.5	0.03
Aortic valve reintervention	0.2	0.3	0.79

1-Year Mortality and All Stroke Unadjusted Cohort

1-Year Mortality Matched

1-Year Stroker Matched

1-Year Mortality or Stroker Matched

Timing of All-Stroke Events

Paravalvular Leak – Matched

Hemodynamics - Matched

NYHA Class - Matched

30d outcomes: Self-expanding valve in BAV from STS/ACC TVT registry

				, , ,	ac
Outcome, %	CoreValve (N=319)	Evolut R (N=677)	Evolut PRO (N=236)	CoreValve vs. Evolut R	Evolut R vs. PRO
All-cause mortality	5.4	2.4	3.0	0.01	0.57
Stroke	1.9	3.3	5.6	0.23	0.12
Myocardial infarction	0.3	0.2	0.4	0.58	0.40
Life threatening / major bleeding	7.4	7.1	7.7	0.93	0.77
Major vascular complications	1.9	1.0	1.7	0.27	0.42
Permanent pacemaker	24.7	17.1	11.2	<0.01	0.04
New requirement for dialysis	2.0	1.4	0.0	0.49	0.08
Aortic valve re-intervention	1.7	1.1	0.0	0.46	0.12

John K. Forrest, TVT2019

P_\/alup

Hemodynamics: Self-expanding valve in BAV from STS/ACC TVT registry

Mean Aortic Valve Gradient

СТАР 2023

John K. Forrest, TVT2019

30d AR: Self-expanding value in BAV from STS/ACC TVT registry

John K. Forrest, TVT2019

CVRF

NYHA class: Self-expanding valve in BAV from STS/ACC TVT registry

John K. Forrest, TVT2019

30d, 1y outcomes: TAVR in Bicuspid vs Tricuspid AS from STS/ACC TVT registry

		30 Days			1 Year	
Outcome, n (%)	Bicuspid Group	Tricuspid Group	<i>p</i> Value	Bicuspid Group	Tricuspid Group	<i>p</i> Value
All-cause mortality	23 (2.6)	15 (1.7)	0.18	62 (10.4)	69 (12.4)	0.63
Stroke	31 (3.4)	25 (2.7)	0.41	33 (3.9)	34 (4.4)	0.93
Myocardial infarction	2 (0.2)	3 (0.3)	0.66	4 (0.7)	5 (0.8)	0.75
Life threatening bleeding	1 (0.1)	1 (0.1)	0.99	2 (0.3)	2 (0.3)	0.98
Valve thrombosis	0 (0.0)	1 (0.1)	0.32	0 (0.0)	1 (0.1)	0.32
Permanent pacemaker	141 (15.4)	126 (13.7)	0.30	145 (16.4)	136 (15.9)	0.52
Percutaneous coronary intervention	2 (0.2)	1 (0.1)	0.56	3 (0.5)	4 (0.8)	0.72
Aortic valve re-intervention	7 (0.8)	1 (0.1)	0.03	11 (1.7)	2 (0.3)	0.01
Valve-related readmission	10 (1.1)	6 (0.7)	0.31	23 (3.8)	18 (3.1)	0.40

1-year mortality: TAVR in Bicuspid vs Tricuspid AS from STS/ACC TVT Registry

30d AR: TAVR in Bicuspid vs Tricuspid AS from STS/ACC TVT registry

John K. Forrest et al, JACC Cardiovasc interv 2020;13: 1749-1759

NYHA class: TAVR in Bicuspid vs Tricuspid AS from STS/ACC TVT registry

John K. Forrest et al, JACC Cardiovasc interv 2020;13: 1749-1759

30-day Outcomes: TAVR in Bicuspid from STS/ACC TVT Registry

KM estimate %	Bicuspid	Tricuspid AS	p-value
All-cause mortality	2.6	2.5	0.82
All stroke	2.4	1.6	0.02
Life-threatening bleeding	0.1	0.1	0.99
Major vascular complication	0.9	1.0	0.68
New pacemaker	9.1	7.5	0.03
Aortic valve reintervention	0.2	0.3	0.79

1-year mortality: TAVR in Bicuspid vs Tricuspid AS from STS/ACC TVT Registry (PS matching)

Raj R. Makkar et al: JAMA 2019;321:2193-202

1-year Stroke: TAVR in Bicuspid vs Tricuspid AS from STS/ACC TVT Registry (PS matching)

1023 TCTAP 2023

Raj R. Makkar et al: JAMA 2019;321:2193-202

Paravalvular leakage: TAVR in Bicuspid from STS/ACC TVT Registry (PS matching)

Raj R. Makkar et al: JAMA 2019;321:2193-202 ³³²

Hemodynamics: TAVR in Bicuspid from STS/ACC TVT Registry (PS matching)

Nc

Outcomes of TAVR in Bicuspid vs Tricuspid AS from STS/ACC TVT Registry

Outcomes	Bicuspid N=5412	Tricuspid N=165547	P Value
Device success, n (%)	5146 (96.0)	158959 (96.7)	0.004
Conversion to open heart surgery, n (%)	39 (0.7)	938 (0.6)	0.139
Need for second valve, n (%)	90 (1.7)	1967 (1.2)	0.002
Post-TAVR mean aortic valve gradient (mmHg)	10.0 (7.0-14.0)	9.0 (7.0-12.0)	<0.00 1
Post-TAVR mean aortic valve area (cm ²)	1.8 (1.4-2.2)	1.8 (1.5-2.2)	0.473
Post-TAVR moderate/severe aortic insufficiency, n (%)	241 (4.7)	5468 (3.5)	<0.00 1
Post-TAVR moderate/severe paravalvular aortic insufficiency, n (%)	215 (4.4)	4753 (3.2)	<0.00 1
Post-TAVR moderate/severe central aortic insufficiency, n (%)	12 (0.3)	429 (0.3)	0.643

Halim et al:Circulation 2020;141:1071-1079

In-hospital Outcomes of TAVR in Bicuspid vs Tricuspid AS from STS/ACC TVT Registry

Outcomes	Bicuspid N=5412	Tricuspid N=165547	P Value
In-hospital death, n (%)	110 (2.0)	3598 (2.2)	0.484
Observed/expected mortality ratio (95% CI)	0.40 (0.33-0.48)	0.31 (0.30-0.32)	0.006
In-hospital stroke, n (%)	117 (2.2)	3131 (1.9)	0.151
In-hospital transient ischemic attack, n (%)	11 (0.2)	318 (0.2)	0.853
In-hospital VARC major or life- threatening bleeding, n (%)	303 (5.7)	10042 (6.2)	0.159
Length of stay (days), n (%)	3.0 (2.0-6.0)	3.0 (2.0-6.0)	<0.00 1

Halim et al:Circulation 2020;141:1071-1079

1 Year rate of mortality and stroke ; TAVR in Bicuspid vs Tricuspid AS from STS/ACC TVT Registry

Halim et al:Circulation 2020;141:1071-1079

TCTAP 2023

Bicuspid Aortic Valve Morphology and Outcomes After TAVR

Baseline Characteristics

Demographics & Risk Factors	Overall (n = 1115)	Other Comorbidities & Echo parameters	Overall (n = 1115)
Age, years	75.1 ± 9.4	Chronic lung disease	24.9%
Male	58.9%	Atrial Fibrillation	19.8%
NYHA class III or IV	75.3%	Permanent Pacemaker	7.6%
STS score, %	4.2 ± 3.6	Aortic Valve Area (cm ²)	0.7 ± 0.2
Diabetes	25.3%	Mean Gradient (mmHg)	48.5 ± 17.6
Prior PCI	20.7%	LVEF (%)	52.6 ± 15.2
Prior CABG	8.6%	≥ Moderate AR	10.8%
Prior CVA	13.5%	≥ Moderate MR	10.0%
% or mean + SD			

TCTAP 2023

CT Findings and Procedural Data

Characteristic	Overall (n = 1115)
Type of Bicuspid	
No Raphe (type 0)	11.2%
Calcified Raphe (type 1)	46.5%
Non-calcified Raphe (type 1)	42.3%
Calcification Volume in Leaflet (mm ³)	381 (190 – 691)
Aortopathy (diameter ≥ 40 mm)	45.7%
Transfemoral access	90.3%
Device generation	
Early-generation	23.2%
Newer-generation	76.8%

% or median (IQR)

TCTAP 2023

Various BAV Morphology

Phenotype Distribution

All-cause Death According to Raphe

TCTAP 2023

SH Yoon and Raj R. Makkar, Euro PCR 2019

CVRF

All-cause Death According to Leaflet Calcium

ŤČTAP 2023

SH Yoon and Raj R. Makkar, Euro PCR 2019

Independent Correlates of All-cause Mortality

	HR (95% CI)	<i>P</i> Value
STS score	1.04 (1.01 – 1.08)	0.02
MR ≥ moderate at baseline	1.65 (1.02 – 2.68)	0.04
Type of Bicuspid AV		0.001
No raphe (Sievers' type 0)	Reference	-
Non-calcified raphe (Sievers' type 1)	1.55 (0.69 – 3.50)	0.29
Calcified raphe (Sievers' type 1)	2.80 (1.29 – 6.08)	0.009
Excess leaflet calcification	1.53 (1.05 – 2.22)	0.03
Non-transfemoral access	1.70 (1.05 – 2.75)	0.03
Early-generation devices	1.71 (1.17 – 2.50)	0.005

28% ТСТАР 2023

All-cause Mortality and BAV Phenotype 1115 Bicuspid AS patients, 25 Centers

TCTAP 2023

SH Yoon and Raj R. Makkar, Euro PCR 2019

ČVRF

Procedural and 30-day Outcomes According to BAV Phenotype

28th TCTAP 2023

All-cause Mortality and BAV Phenotype Among Low-Risk Patients with New Devices

TCTAP 2023

Outcomes According to BAV Phenotype Among Low-Risk Patients with New Devices

28th TCTAP 2023

All-cause Mortality and Aortopathy

TCTAP 2023

- BAV morphology such as calcified raphe and excess leaflet calcification were independently associated with increased procedural complications and 2-year all-cause mortality
- The impact of BAV morphology on outcomes was consistent in low surgical risk patients as well as in patients who had TAVR with newer generation devices
- Aortopathy was not independently associated with allcause mortality

Optimal TAVR for Bicuspid AV

- We need more experiences
- Case selection
- Balloon sizing: Do NOT select too oversize-device in balloon expandable device!
- TAVR for tricuspid and bicuspid AS showed similar long-term mortality. New devices showed better outcomes.
- Relatively high risk of PPM should be considered in younger pts.
- The selected patients with bicuspid AV stenosis would be a candidate of TAVR with better devices.

TAVR for AR

- 1st Generation 25F CoreValve
- **2004 2005**

- 21 Aug 2004 for Pure AR
- 12 Jul 2004 for ASR

Technical challenges for current TAVI systems

Morphological Features of Aortic Valve Stenosis or Regurgitation

Calcific Aortic Valve Stenosis

1- Nodular calcific deposits on aortic side

1- Minimal or absent cusp calcification

- 2- Dilated aortic root
- 3- Frequent coexistence of dilated ascending aorta

Technical Challenges of TAVR in Aortic Valve Regurgitation

Suboptimal Fluoroscopic Visualization of the Native Valve

Insufficient Anchoring and Sealing of the Transcatheter Device

Risk of Misplacement and Migration of the Device

Risk of Residual Valvular Regurgitation

Early evidence

Self expanding CoreValve

- Better for anchoring in the absence of calcification
- Less risk of annular rupture during deployment
- Better to treat larger anatomies

In early 2 studies

- High early mortality
- Less permanent pacemaker (lack of calcification)
- High rates of PVL and second valve

- Self-expanding Nitinol frame with flexible stent posts
- Porcine root valve
- Clip fixation of native leaflets
- Rapid pacing not required
- Annular range: 21 27 mm
 - 3 valve sizes: 23, 25, 27 mm
- 32Fr introducer sheath

Jena valve

Trans-apical, severe AR, 31 patients, mean age 73.8 \pm 9.1, EuroSCORE 23.6 \pm 14.5

TABLE 3 VARC-2 Defined Endpoints	
Myocardial infarction	0
Cerebrovascular event	0
Bleeding, major or life-threatening	3 (9.7)
Access site complication	
Minor	1 (3.2)
Major	3 (9.7)
Acute kidney injury	
Stage 1 or 2	6 (19.3)
Stage 3	1 (3.2)
Permanent pacemaker implantation	2 (6.4)*
ICU stay, days	$\textbf{3.2} \pm \textbf{2.8}$
In-hospital stay, days	10.8 ± 5.6
Device success	30 (96.8)
Combined early safety endpoint, 30 days	6 (19.3)
All-cause mortality, 30 days	4 (12.9)
Cardiac mortality, 30 days	1 (3.2)
All-cause mortality, 6 months	6 (19.3)
Cardiac mortality, 6 months	1 (3.2)

- The only TAVI device which is CE marked for treatment of pure AR
- Effectively eliminated PVL and the need for a second valve, which led to high device success

28th TCTAP 2023

Trans-apical, severe AR, 30 patients, mean age 74.4 \pm 9.3, Logistic EuroSCORE I 17.7 \pm 14.8

 All-cause mortality at 1 year – 20% (6/30) with cardiovascular mortality – 10% (3/30)
 Silaschi, et. al., Catheter Cardiovasc Interv. 2018

TCTAP 2023

Jena valve

Trans-apical, severe AR, 30 patients, mean age 74.4 \pm 9.3, Logistic EuroSCORE I 17.7 \pm 14.8

Composite endpoint	
Device success, no. (%)	24/27 (88.9%)
 Sequential THV, no. 	0
 Conversion to open SAVR, no. (%) 	1/27 (3.7)
 Function of THV not as intended assessed by echo, no. (%) 	2/27 (7.4)*
Combined safety endpoint at 30 days, no. (%)	4 (13.3)
All-cause mortality, no. (%)	3 (10.0)
-Cardiovascular mortality, no. (%)	2 (6.7)
Major stroke, no. (%)	1 (3.3)
- Valve embolization, no. (%)	1 (3.3)
 Life-threatening or disabling bleeding, no. 	0
 Acute kidney injury stage III, no. 	0
 Peri-procedural MI, no. 	0
-Coronary ostia occlusion, no.	0
 Major vascular complication, no. 	1 (3,3)
-Annular rupture, no.	0 A really
 Repeat procedure for valve related dysfunction, no. (%) 	1 (3,3)"
 Valve migration, no. 	0
Combined efficacy at one year, no. (%)	19/26 (73.1)
 All-cause mortality after 30 days, no. (%) 	3 (11.1)
-Cardiovascular mortality after 30 days, no. (%)	1 (3.7)
 Life-threatening/disabling bleeding, no. (%) 	1 (3.7)
 Prosthetic valve endocarditis, no. 	0
 Prosthetic valve thrombosis, no. 	0
 Repeat procedure for valve related dysfunction, no. (%) 	
-SAVR ² , no. (%)	1 (3.7)
-Valve-in-valve, no. (%)	1 (3.7)
 -Failure of current therapy for aortic regurgitation, no. (%) 	1 (3.7)

All-cause mortality at 1 year – 20% with cardiovascular mortality – 10%

Silaschi, et. al. , Catheter Cardiovasc Interv. 2018

- Self-expanding Nitinol frame
- Porcine aortic valve
- Clasper—independently operated 3D ring that corresponds to the native sinuses, orients the valve stent, and captures the native leaflets
- Annular range: 19 27 mm
- 4 valve sizes: 21, 23, 25, and 27 mm
- 27Fr sheathless transapical delivery catheter

Trans-apical, severe AR, 33 patients, mean age 74.2 \pm 5.2, EuroSCORE 24.4 \pm 5.1

Outcomes	
Device Success	94%
2 nd Valve	0%
Conversion to SAVR	3%
30-Day Mortality	3%
Moderate / Severe PVL	3%
Permanent Pacemaker	6.10%

Evolut R

- Self-expanding Nitinol frame
- Porcine pericardial supra-annular valve
- Optimized sealing: extended skirt and more conformable frame
- Recapturable
- Annular range: 18 30 mm
- 4 valve sizes: 23, 26, 29, 34 mm
- 14Fr –equivalent profile, vessels ≥ 5.0 mm
- 34 mm system: 16Fr-equivalent, vessels ≥ 5.5 mm

JenaValve Trilogy Heart Valve

- Self-expanding Nitinol frame
- Porcine pericardial tissue
- Locator clip onto native leaflets forming a natural seal
- Needs no calcium to anchor
- Less permanent pacemaker

- Annular range: 21 27 mm
 - 3 valve sizes: 23, 25, 27 mm
- Transfemoral access with an 18Fr profile

Accurate neo 2 THV

- Self-expanding Nitinol frame
- Porcine pericardial tissue
- Top-down deployment

- Annular range: 20 26.3 mm
 - 3 valve sizes
 - S: 20.0 22.4mm
 - M: 22.5 24.3mm
 - L: 24.4 26.3 mm

Transfemoral access with an 18Fr profile

Accurate neo 2 THV

Pure non-calcified AR TAVR, total 9 patients, logEuroSCORE II 5.5 \pm 3.6%, STS PROM 6.2 \pm 3.0%

	Study group ($n = 9$)
All-cause mortality (30 days), % (n)	O (O)
Stroke (any), % (n)	O (O)
Myocardial infarction, % (n)	O (O)
Bleeding (major/life threatening), % (n)	O (O)
Access site complications (major), % (n)	0.0 (0)
Acute kidney injury (AKIN* 2, 3), % (n)	22.2 (2)
PPM implantation, % (n)	O (O)
Device success [†] , % (n)	100 (9)
Early safety [‡] , % (n)	77.7 (7)
Intensive care unit stay, days	1.7 ± 1.1
In hospital stay, days	12.9 ± 8.8
Peak gradient, mmHg	15.3 ± 12.3
Mean gradient, mmHg	7.2 ± 5.5
Mild PVL, % (n)	22.2 (2)
PVL > mild, % (n)	O (O)

PPM, Permanent pacemaker; PVL, Paravalvular leakage; *AKIN, Acute Kidney Injury Network; VARC-2 definitions: [†]Device success: absence of procedural mortality, correct positioning of a single prosthetic heart valve into the proper anatomical position, intended performance of the prosthetic heart valve (no prosthesis-patient mismatch and mean aortic valve gradient < 20 mmHg or peak velocity < 3 m/s and no moderate or severe prosthetic valve regurgitation), [‡]Early safety at 30 days: all-cause mortality (at 30 days), all stroke (disabling and non-disabling), life-threatening bleeding, acute kidney injury stage 2 or 3 (including renal replacement therapy), coronary artery obstruction requiring intervention, major vascular complication, valve-related dysfunction requiring repeat procedure (Balloon aortic valvuloplasty, TAVI, or SAVR).

1023 TCTAP 2023

TAVR for pure native AR

Pure native AR TAVR multicenter registry, total 331 patients, STS score 6.7 \pm 6.7

	Overall (N = 331)	Early-Generation Devices (n = 119)	New-Generation Devices (n = 212)
Device type			
Sapien XT	9 (2.7)	9 (7.6)	—
Sapien 3	41 (12.4)	5000	41 (19.3)
CoreValve	110 (33.2)	110 (92.4)	
Evolut R	50 (15.1)	and a	50 (23.6)
JenaValve	64 (19.3)		64 (30.2)
Direct Flow	35 (10.6)		35 (16.5)
J-Valve	1 (0.3)	-	1 (0.5)
Engager	7 (2.1)	-	7 (3.3)
Portico	3 (0.9)	-	3 (1.4)
Acurate	5 (1.5)	-	5 (2.4)
Lotus	6 (1.8)	-	6 (2.8)

TAVR for pure native AR

Pure native AR TAVR multicenter registry, total 331 patients, STS score 6.7 \pm 6.7

Implications: High-risk or inoperable patients who undergo TAVR to treat pure native AR fare better when they receive new-vs early-generation valves.

TAVR for pure native AR

Pure native AR TAVR multicenter registry, total 331 patients, STS score 6.7 \pm 6.7

Mortality and Post-Procedural Aortic Regurgitation

Sung-Han Yoon, et al. JACC 2017

Pure AR in native and prosthetic valve

78 patients with native valve / 68 patients with prosthetic valve

	Pure Severe NAVR (n = 78)	Failing SHV With Severe AR (n = 68)
THV device		
CoreValve	33/78 (42%)	38/68 (56%)
Evolut R	5/78 (6%)	7/68 (10%)
JenaValve	23/78 (29%)	-
Direct Flow	6/78 (8%)	1/68 (1%)
Lotus	6/78 (8%)	
SAPIEN XT	4/78 (5%)	17/68 (25%)
SAPIEN 3	1/78 (1%)	5/68 (7%)

Pure AR in native and prosthetic valve

78 patients with native valve / 68 patients with prosthetic valve

Native aortic valve

Failing surgical heart valve (SHV)

Old-Gen	New-Gen		Old-Gen	New-Ger
THV	THV		THV	THV
54%	85%	Device success	69%	77%
62%	69%	Early safety	90%	92%
46%	75%	Clinical efficacy	77%	77%

TAVR in AR : The U.S. experience

Study cohorts from Nationwide Inpatient Sample (NIS) and Nationwide Readmissions Database (NRD), 2016-2017 915 patients from NIS, 822 patients from NRD

TABLE 2 Complications associat	ed with TAVR in	AR
TAVR in AR	NIS In-hospital complications	NRD 30-day complications
Patient population	915	822
Overall complications	38.3	39.9
All-cause mortality	2.7	3.3
Disabling stroke	0.6	1.8
Valvular complications	19.1	18.2
Moderate to severe para-valvular regurgitation	4.4	7.4
Displacement of valve	0.6	0.2
Infection of valve	0.0	1.2
Breakdown of valve	4.4	5.2
Unspecified valve complications	9.8	9.3
Complete heart block/permanent pacemaker placement	10.9	10.7
Open heart surgery for aortic valve	0.0	0.6
Acute kidney injury needing hemodialysis	0.0	2.2
Acute myocardial infarction	6.0	4.6
Periprocedural shock	1.6	0.7
Any pericardial complications	1.6	0.9
Transient ischemic attack	0.0	0.3
Major bleeding need transfusion	2.2	7.7
Vascular complications	1.1	1.5

28th TCTAP 2023

TAVR in AR : The U.S. experience

Study cohorts from Nationwide Inpatient Sample (NIS) and Nationwide Readmissions Database (NRD), 2016-2017 915 patients from NIS, 822 patients from NRD

28th TCTAP 2023

Arora, et al. Catheter Cardiovasc. Interv 2021

The ALIGN-AR EFS Trial : JenaValve Pericardial TAVR AR

Transfemoral JenaValve Pericardial TAVR in patients with severe AR

- NCT02732704
- Primary outcome: All-cause mortality at 30 days,
- Secondary outcome: Mortality, Peri-procedural MI, Stroke-Free survival, Bleeding & Vascular complications

The JenaValve ALIGN-AR Pivotal Trial (ALIGN-AR)

To assess safety and effectiveness of the JenaValve Trilogy in high surgical risk patients with severe AR

- NCT04415047
- On recruiting
- Primary outcome: All-cause mortality at 1 Year, All stroke, Major bleeding, AKI, Major vascular complications, Surgery/intervention related to the device, PPM, total AR
- Secondary outcome: KCCQ improvement

Valve-in-Valve

PARTNER 2 Valve-in-Valve Registry 5-year outcomes

Hahn RT, et al. J Am Coll Cardiol Intv. 2022;15(7):698-708.

28th TCTAP 2023

A. Changes in hemodynamics

B. Changes in function and quality of life

Hahn RT, et al., JACC Cardiovasc Interv. 2022 Apr 11;15(7):698-708.

28th TCTAP 2023

Hemodynamic Deterioration of Surgically Implanted Bioprosthetic Aortic Valves

Prospective longitudinal study of 137 patients who had previously undergone bioprosthetic valve surgery.

- 25.6% had leaflet calcification on noncontrast CT at a median of 6.7 years post-SAVR. By a median of 3 years later, 13.1% of pts developed hemodynamic valve deterioration (HVD)
- Leaflet calcification independently predicted the risk of death/reintervention (HR 2.58; 95% CI 1.35-4.82), as did HVD (HR 5.12; 95% CI 2.57-9.71)
- Predictors of HVD were leaflet calcification, insulin resistance, increased Lp-PLA2 activity, and high PCSK9 level

Implications: Dysmetabolic profile and calcification could be early warning signs of hemodynamic deterioration of bioprosthetic valves.

Salaun E, et al. J Am Coll Cardiol. 2018;72:241-251.

Most Common Reasons for Bioprosthetic Valve Failure

(A) Wear and tear
(B) Calcific degeneration
(C) Pannus
(D) Endocarditis
(E) Thrombus

Wear and tear (A) and calcification (B) are the most common reasons for bioprosthetic valve failure

Dimensions of Stented Bioprosthetic Valves

- (A) Diagrammatic representation of stented bioprosthetic valve dimensions
 - A outer stent diameter
 - B inner stent diameter
 - C prosthesis height
 - D outer sewing ring diameter.
- (B) Inferior (ventricular) view of stented bioprosthesis.
- (C) Side view of stented bioprosthesis.

28th TCTAP 2023

Piazza, N, et al. JACC Cardiovasc Interv. 2011;4:721-32.

TAVR for degenerative bioprosthetic surgical valves: Valve-in-Valve Registry

Treating a failed bioprosthesis via TAVR Feasible and often effective but technically demanding

The Global Valve-in-Valve Registry

■416 high-risk patients

54 centers in Europe, North America, Australia, New Zealand, and the Middle East

225 Sapien (Edwards) /190 CoreValve /1 Melody (Medtronic)

"Relatively high rates" of Complications

- initial device malapposition / attempted valve retrieval
- implantation of a second device

post-implantation valvuloplasty

- need for emergent surgery
- clinically-evident coronary obstruction

Improvement of functional capacity at 30 days 87.5% of patients classified as NYHA class I/IIs

Aortic Valve-in-Valve is an effective procedure

PARTER NR3 viv. JACC 2017

TAVR for degenerative bioprosthetic surgical valves Valve-in-Valve Registry

Mortality at 30	Days			
	Mechar	nism of bioprosth	etic valve fai	ilure
	Stenosis (n = 168)	Regurgitation (n = 125)	Combined (n = 123)	<i>P</i> Value
All-Cause	10.9%	4.1%	6.7%	0.09
Cardiovascular	9.8%	3.3%	5.8%	0.08

- Registry shows valve-in-valve procedure via TAVR can effectively treat failed bioprostheses
- Poorest outcomes seen in patients with stenosis vs regurgitation or combination of both
- Technically challenging procedure best performed by experienced operators

Valve-In Valve TAVR

Kaneko T, et al., Circ Cardiovasc Interv. 2021 May;14(5)

Valve-In Valve TAVR

Dvir D et al. JAMA. 2014;312(2):162-170

30-day Outcomes of Valve-in-Valve Stenosis vs. Regurgitation

Outcomes	All N = 459Stenosis N = 181Regurgitation N = 139Combined N = 139nortality, %cause 7.6 10.5 4.3 7.2 diac cause 6.5 8.8 3.6 6.5 roke, % 1.7 0.6 2.2 2.9 iscular ations, % 9.2 7.7 7.2 12.9 atening/major g, % 8.1 11.0^* 3.6^* 8.6^* dney injury 7.4 8.8 7.2 5.8 manent pacemaker, % 8.3 9.4 8.6 6.5 equivation ate, % 5.4 2.8^* 9.4^* 5.0^*			
30 day mortality, %				
All-cause	7.6	10.5	4.3	7.2
Cardiac cause	6.5	8.8	3.6	6.5
Major Stroke, %	1.7	0.6	2.2	2.9
Major vascular complications, %	9.2	7.7	7.2	12.9
Life threatening/major bleeding, %	8.1	11.0*	3.6*	8.6*
Acute kidney injury (stage II/III), %	7.4	8.8	7.2	5.8
New permanent pacemaker, %	8.3	9.4	8.6	6.5
Aortic regurgitation ≥moderate, %	5.4	2.8*	9.4*	5.0*
Ejection fraction %	52±12	54±10*	49±12*	51±13*

1-year Outcomes of Valve-in-Valve Stenosis vs. Regurgitation

Outcomes	All N = 459	Stenosis N = 181	Regurgitation N = 139	Combined N = 139
1-year mortality, %	16.8	23.4	8.8	16.1
NYHA class III/IV, %	13.8	15.1	14.8	11.3
AV area, cm2	1.4±0.4	1.3±0.3*	1.5±0.5*	1.4±0.5*
AV peak gradient, mm Hg	30±15*	32±15*	25±15*	32±13*
AV mean gradient, mm Hg	17±9	18±10	14±9	18±8

* p value < 0.05

30-day Outcomes of Valve-in-Valve SAPIEN vs. CoreValve

Outcomes	All N = 459	Sapien N = 246	CoreValve N = 213	p value
30day-mortality, %				
All-cause	7.6	8.1	7.0	0.66
Cardiac cause	6.5	7.3	5.6	0.47
Major Stroke, %	1.7	2.4	0.9	0.22
Major vascular complications, %	9.2	10.6	7.5	0.26
Life threatening/major bleeding, %	8.1	11.0	4.7	0.01
Acute kidney injury (stage II/III), %	7.4	10.2	4.2	0.02
New permanent pacemaker, %	8.3	4.9	12.2	0.05
Aortic regurgitation ≥moderate, %	5.4	2.4	8.9	0.002
Ejection fraction %	52±12	52±11	51±12	0.002

1-year Outcomes of Valve-in-Valve SAPIEN vs. CoreValve

Outcomes	All N = 459	Sapien N = 246	CoreValve N = 213	p value
1-year mortality, %	16.8	15.0	18.7	0.44
NYHA class III/IV, %	13.8	18.4	17.6	0.89
AV area, cm2	1.4 ± 0.4	1.6 ± 0.4	1.3 ± 0.4	0.006
AV peak gradient, mm Hg	30 ± 15*	25 ± 12	33 ± 16	< 0.001
AV mean gradient, mm Hg	17 ± 9	14 ± 7	19 ± 10	< 0.001
			* p value	< 0.05

Balloon-expandable vs. Self-expandable outcome in Valve-in-Valve

van Nieuwkerk AC.et al. Am J Cardiol. 2022 Jun 1;172:81-89

Balloon-expandable vs. Self-expandable outcome in Valve-in-Valve

Study name	Subgroup					Event	rate and §	5% CI	
		Event rate	Lower	Upper limit					
Dvir (2014)	Balloon	0.150	0.111	0.201	12	1	1.	- 1	
Ochiai (2018)	Balloon	0.054	0.014	0.192				-	
Seiffert (2018)	Balloon	0.111	0.069	0.174			-		
Webb (2019)	Balloon	0.118	0.089	0.155					
		0.126	0.104	0.151					
Dvir (2014)	Self	0.117	0.081	0.168				-	
Ochiai (2018)	Self	0.027	0.004	0.168			-	-	
Choi (2019)	Self	0.125	0.053	0.267			-		
Deeb (2017)	Self	0.115	0.079	0.163				F	
Duncan (2015)	Self	0.136	0.045	0.348					
Linke (2012)	Self	0.111	0.036	0.293			-	-	
Lopez (2018)	Self	0.056	0.008	0.307				-	
Sang (2017)	Self	0.022	0.001	0.268			-	-	
Scholtz (2018)	Self	0.054	0.014	0.192				- 1	
Tchétché (2019)Self	0.084	0.053	0.131				- I	
		0.103	0.084	0.127					
Overall (12=0%,	p=0.522)	0.115	0.100	0.132					
					-0.50	-0.25	0.00	0.25	
3-Year Mort	ality					P	ooled mort	ality	
		Event rate	Lower limit	Upper limit					
Webb (2019)	Balloon	0.312	0.267	0.362		1			
		0.312	0.149	0.541					
Dauerman (2019	9)Self	0.265	0.212	0.327					
Scholtz (2018)	Self	0.135	0.057	0.286			-	-	
REPORTED AND AND AND ADDRESS		0.212	0.109	0.371					
		0.249	0.153	0.379					
Overall (P=63.7	79%, p=0.06	(3)			-1.00	-0.50	0.00	0.50	

Hamilton GW, et al., Am J Cardiol. 2020 May 15;125(10):1558-1565.

Balloon-expandable vs. Self-expandable In small aortic annulus (<u>\$23mm</u>)

All-cause mortality

Hase H, et al., The OCEAN-TAVI registry. Catheter Cardiovasc Interv. 2021 May 1;97(6):E875-E886.

Mean PG by echocardiography after 30day of procedure

Rodés-Cabau J, et al., The LYTEN Trial. J Am Coll Cardiol. 2022 May 13:S0735-1097(22)04978-6.

Post Procedural Gradients CoreValve Device

Mean Aortic-Valve Gradients (mmHg)

Surgical Bioprosthesis Internal Diameter (mm)

In small surgical bioprosthesis (<20mm ID)- 25.9% had elevated gradients

28th TCTAP 2023

1. Divir, D. Global Valve Registry. TCT 2011.

* Mean aortic-valve gradient> 20mmHg.

Coronary Obstruction after Valve-in-Valve procedure

28th TCTAP 2023 Ribeiro HB et al. TCT 2016

Incidence of Coronary Obstruction According to the Type of Surgical Bioprosthesis

Ribeiro HB, et al., Eur Heart J. 2018 Feb 21;39(8):687-695

Distribution of the Patients According to VTC-LCA Ostia Distance (mm)

Ribeiro HB, et al., Eur Heart J. 2018 Feb 21;39(8):687-695

28th TCTAP 2023 Danny Dvir, MD. TVT 2017

Danny Dvir, MD. TVT 2017

Permanent pacemaker implantation after Valve-in-valve

PPI rate after ViV-TAVR for Early- and New-generation Devices

Alperi A, et al., VIVID Registry. J Am Coll Cardiol. 2021 May 11;77(18):2263-2273

Permanent pacemaker implantation after Valve-in-valve

Survival curve After ViV-TAVR by PPI and Age

Alperi A, et al., VIVID Registry. J Am Coll Cardiol. 2021 May 11;77(18):2263-2273

Bioprosthetic Valve Fracture for Optimizing Results of Valve-in-Valve TAVR

Impact of Surgical Valve Size on 1-Year Mortality

VIVID Registry

- 459 pts with failed surgical bioprostheses treated with ViV TAVR (59% balloon expandable, 41% selfexpanding)
- Patients stratified based on size of original surgical valve
 - Small ≤ 21 (n=133)
 - Medium 22-24 (n=176)
 - *− Large* ≥ 25 (*n*=139)
- Small surgical valve independently associated with 1-year mortality (HR 2.04, p=0.02)

Bioprosthetic Valve Fracture in VIV TAVR

- 20 consecutive patients from 7 US centers treated with bioprosthetic valve fracture at the time of ViV TAVR
- Mean age 76 years; mean STS-PROM 8.4%
- Valves treated: Mitroflow, Perimount, Magna/Magna-Ease, Biocor Epic/Epic-Supra, and Mosaic
- Treated with both self-expanding (n=12) and balloon expandable (n=8) TAVR valves
- 15/20 underwent BVF <u>after</u> TAVR valve deployed

Fracturing the Ring of small bioprostheses

Images and Case Reports in Interventional Cardiology

Fracturing the Ring of Small Mitroflow Bioprostheses by High-Pressure Balloon Predilatation in Transcatheter Aortic Valve-in-Valve Implantation

Jens Erik Nielsen-Kudsk, MD, DMSc; Evald Høj Christiansen, MD, PhD; Christian Juhi Terkelsen, MD, DMSc; Bjarne Linde Nørgaard, MD, PhD; Kaare Troels Jensen, MD, PhD; Lars Romer Krussell, MD; Mariann Tang, MD; Kimi Terp, MD; Kaj-Erik Klaaborg, MD; Henning Rud Andersen, MD, DMSc

Entry detrivation of Metroflow antic bioprostheses (Sorin Georap Inc.), particularly small sizes 19 and 21 mm, has been reported.¹ Treatment of failing bioprostheses by transcatteter valve-in-valve (VIV) therapy has become an alternative to repeat urgrey.¹⁵ However, VTV transment is problematic with small surgical bioprostheses because of a fauther notaction in the effective valve orifice. Our way to overcome this challenge may be to fracture the ting of the surgical valve by high-pressure balloon dilutation before implanting a larger size transcatheter valve. The feasibility of this approach was recently reported for an Edwards Perinneart bioprosthesis (19 mm) in the polynomic position.⁴ We report the first cases in vitro and in man of high-preventer balloon dilutation to fracture the ring of small dysfunctional Mitroflow astic bioprostheses followed by transcatheter VIV implantion.

The Mitroflow bioprosthesis is build from a bovine pericardial sheet natured to the outside of an acetyl stent to form heart valve in vitro in one of the fractured 21 mm Mitroflow hisprostheses.

After in vitro testing and informed consent, we performed this procedure in 2 patients with small Mitroflow bioprostheses (19 and 21 mm) and high risk to redo surgery (Table). High-pressure balloon predilutation by an ATLAS Gold haltoon led to lincturing of the stent ring of the Mitroflow valves. with subsequent successfully VIV with an SAPIEN XT valve 20 mm (19 mm Mitroflow) and a SAPIEN III 23 mm valve (2) mm Mitroflow; Table). The procedures were performed in general anesthesia guided by fluoroscopy and TEE. Rapid right ventricular pacing (189 bpm) and cardiopulmonary support (CPS 2 l/min; right atrium to left femoral artery) were used during the high-pressure balloon predilatation and at the time of VIV implantation. The Mitroflow valve ring fracturni at a pressure of 16 aim (Mitroflow 19 mmi and 11 aim) (Mitroflow 21 nun) evident by a sudden drop in inflation pressure and resolution of the waist in the balloon with expan-

Bench Testing

Valves that can and cannot be fractured

> To date, the only valves that cannot be fractured are:

Trifecta (St. Jude) Hancock II (MDT)

Manufacturer/ Brand	Valve Size	Bard TRU Balloon Fracture/Pressure	Bard Atlas Gold Balloon Fracture/Pressure	Appearance After Fracture
St. Jude Trifecta	19 mm	NO	NO	
	21 mm	NO	NO	
St. Jude Biocor Epic				100
	21 mm	YES / 8 ATM	YES / 8 ATM	\bigcirc
Medtronic Mosaic	19 mm	YES / 10 ATM	YES / 10 ATM	
1 0 1				I Shell
	21 mm	YES / 10 ATM	YES / 10 ATM	the state
Medtronic Hancock II				
	21 mm	NO	NO	
Sorin Mitroflow	Land			and the second
	19 mm	YES / 12 AIM	YES/12 AIM	A
	21 mm	YES / 12 ATM	YES / 12 ATM	
Edwards MagnaEase				. 1
	19 mm	YES / 18 ATM	YES / 18 ATM	Fal
	21 mm	YES / 18 ATM	YES / 18 ATM	
Edwards Magna				1 0
	19 mm	YES / 24 ATM	YES / 24 ATM	A
	21 mm	YES / 24 ATM	YES / 24 ATM	

Balloons sized 1 mm larger than valve size.
 Medtronic Mosaic and Sorin Mitroflow have no metal in ring therefore appearance after fracture unchanged.

Bioprosthetic Valve Fracture in VIV TAVR

Mean Gradient

Effective Orifice

To date, BVF can be performed **safely** in small surgical valves. However, the safety of this technique is not fully evaluated. Unresolved questions : Timing of BVF (pre vs. post-TAVR)

> David J. Cohen, MD. TVT 2017 Chhatriwalla A, et al. Circ Intv 2017

Viv TAVR Versus TAVR for Native Aortic stenosis

28th TCTAP 2023

Tuzcu, E.M. et al. JACC 2018

ViV TAVR Versus redo-SAVR for Bioprosthetic aortic valve dysfunction

Clinical Valve Thrombosis after Transcatheter Aortic ViV Implantation

Long-Term Outcomes After Transcatheter Aortic ViV Replacement

1011 TCTAP 2023

Leonard de Freitas Campos Guimaraes et al, CIRCINTERVENTIONS, 2018

Viv TABR for Degenerated SBAV Hulticenter Retrospective Analysis

- Among 66 SBAV, Mortality 3.0% at 30 days and 9.6% at 1 year.
- At 1 year, LVED was decreased versus baseline
 : 3.0 [2.6 to 3.6] cm vs. 3.7 [3.2 to 4.4] cm (p < 0.001)
- Coronary occlusion (9.1%) resulted in myocardial infarction (3.0%).
- Predictors of coronary occlusion Subcoronary implant technique compared with full root replacement Short simulated radial valve-to-coronary distance Low coronary height

Conclusions: TAVR in SBAVs is frequently associated with high-risk coronary anatomy but can be performed with a low risk of death and myocardial infarction, resulting in favorable ventricular remodeling. A subcoronary surgical approach is associated with an increased risk of coronary obstruction.

Impact of Leaflet Laceration on Transcatheter Aortic ViV Washout

Hoda Hatoum et al, JACC intv 2019

ViV-TAVR Stentless vs stented Valves

1011 TCTAP 2023

Duncan et al., JACC intv 2019

Clinical and Echocardiographic Outcomes According to Surgical Valve Size

New TAVR Devices

Older & Current

Mauro Chiarito et al. J. Clin. Med. 2022, 11(15)

St. Jude Medical Portico Valve Next Generation Design Features

Open stent cell allows access to coronaries and low crimp profile

Low placement of leaflets/cuff within stent frame allows for minimal protrusion into the LVOT

TAVR with St. Jude Medical Portico Valve: First-in-Human Experience

New valve with repositionable features implanted in 10 pts with severe AS

- Device implantation was successful in all pts; valve recapture/repositioning performed in 4 cases
- At 30 days, no major strokes, major vascular complications, major bleeds, or deaths
- Mean transaortic gradient on echo reduced from 44.9 mm Hg to 10.9 mm Hg (P < 0.001)

Navitor

- Smart sealing mitigates PVL
- Uncompromised coronary access
- 14F delivery system with 5.0 mm minimum vessel diameter
- Recapturable, repositionable, and retrievable design

1.Smith, D. One-year clinical trial results with a next-generation aortic transcatheter heart valve. Presented at: EuroPCR conference; May 17-20, 2022.

2. Forrest JK, Mangi AA, Popma JJ, et al. Early outcomes with the Evolut PRO repositionable self-expanding transcatheter aortic valve with pericardial wrap. J Am Coll Cardiol Intv. 2018:11:160-168.

3.Möllmann H, Holzhey DM, Hilker M, et al. The ACURATE neo2 valve system for transcatheter aortic valve implantation: 30-day and 1-year outcomes. Clin Res Cardiol. 2021 Dec;110(12):1912-1920.

4.Webb J, Gerosa G, Lefèvre T, et al. Multicenter evaluation of a next-generation balloon-expandable transcatheter aortic valve. J Am Coll Cardiol. 2014;64:2235-43. 5.Wyler von Ballmoos MC, Reardon MJ, Williams MR, et al. Three-Year Outcomes With a Contemporary Self-Expanding Transcatheter Valve From the Evolut PRO US Clinical Study. Cardiovasc Revasc Med. 2021 May;26:12-16.

A low-profile self-expanding nitinol Edward valve

28th TCTAP 2023 Didier Tchetche et al. JACC intv 2019;12:673-80.

CENTERA

1 year outcomes from CENTER-EU trial

 TABLE 2 Clinical Outcomes at 30 Days and 1 Year in the As-Treated

 Population (CEC Adjudicated)

	Kaplan-Meier (n = 203)	
Safety Endpoints	30 Days	1 Year
All-cause mortality	1.0 (2)	9.1 (18)
Cardiovascular mortality	1.0 (2)	4.6 (9)
Stroke	4.0 (8)	7.6 (15)
Disabling stroke	2.5 (5)	4.1 (8)
Nondisabling stroke	1.5 (3)	4.1 (8)
Myocardial infarction	1.5 (3)	2.0 (4)
New onset atrial fibrillation	8.0 (16)	11.6 (23)
Cardiac-related rehospitalization	0.5 (1)	6.8 (13)
New conduction abnormalities	24.7 (50)	29.4 (59)
Overall PPMI (as treated) Naive PPMI (n = 187)	4.9 (10) 5.4 (10)	6.0 (12) 6.5 (12)
Life-threatening or disabling bleedings	4.9 (10)	NA*
Major bleedings	14.4 (29)	NA*
Valve prosthesis endocarditis	0 (0)	0.5 (1)
Structural valve deterioration requiring reintervention	0 (0)	0 (0)

Values are % (n). *Bleedings were adjudicated up to 30 days only.

 $\mathsf{CEC}=\mathsf{Clinical}$ Events Committee; $\mathsf{NA}=\mathsf{not}$ applicable; $\mathsf{PPMI}=\mathsf{permanent}$ pacemaker implantation.

TCTAP 2023

CENTERA 1 year outcomes from CENTER-EU trial

TCTAP 2023

Symetis Acurate TATM Aortic Bioprosthesis

- Porcine pericardium
- Self-expanding nitinol stent
- Stent covered inside and out with double porcine pericardium skirt

ACURATETM Highlights

- Trans Apical
 - FIM (n=40) 6mo. results (EACTS 2011)
 - stable valve function with low rates of paravalvular leakages.
 - good clinical outcomes and 6-month survival

Eur J Cardiothorac Surg. 2012 Apr 4. [Epub ahead of print]

ACURATETM Highlights

- Trans Apical
 - Pilot (n=50) 30days results (TCT 2011)
 - FIM (n=40) 1Y results (AHA 2011)
 - Pivotal (n=150) enrollment start, 2011(4th quarter)
 - SAVI post-market registry (n=250) with commercial implants
 - * Received CE Certification in November 2011 for commercial use
- Trans Femoral
 - FIM (n=20) enrollment start, 2012(1st quarter) (Brazil/Germany/France)
 - Pilot (n=50) enrollment start, 2012(3rd quarter)

Eur J Cardiothorac Surg. 2012 Apr 4. [Epub ahead of print] Methodist Debakey Cardiovasc J. 2012 Apr;8(2):9-12

Trans Apical

- Pilot (n=50) 30days results (TCT 2011)
- FIM (n=40) 1Y results (AHA 2011)
- Pivotal (n=150) enrollment start, 2011(4th quarter)
- SAVI post-market registry (n=250) with commercial

implants

* Received CE Certification in November 2011 for commercial use

• Trans Femoral

- FIM (n=20) enrollment start, 2012(1st quarter) (Brazil/Germany/France)
- Pilot (n=50) enrollment start, 2012(3rd quarter)

Eur J Cardiothorac Surg. 2012 Apr 4. [Epub ahead of print] Methodist Debakey Cardiovasc J. 2012 Apr;8(2):9-12

ACURATE *neo2* demonstrates sustained safety and performance for TAVI

All-cause

mortality

Disabling

stroke

@12m

Minimal paravalvular leak

PVL@12m 97.5% ≤ mild 2.5% moderate 0% severe

Clinical Research in Cardiology (2021) 110:1912–1920

Both mean aortic valve gradient and men effective orifice area improved(p<0.001) Inter-individual improvement in paravalvular leak

TCTAP 2023

Clinical Research in Cardiology (2021) 110:1912–1920

Both mean aortic valve gradient and men effective orifice area improved(p<0.001) Inter-individual improvement in paravalvular leak

Clinical Research in Cardiology (2021) 110:1912–1920

Durability

- Bovine pericardium, selected in material thickness and elasticity
- Robust, self-expanding, lasered nitinol stent
- Leaflet stress reduction
 through flexible commissural
 fixation points

Control

- T-Bars facilitate safe anchoring to the catheter
- Radiopaque marker rings for accurate positioning
- Sqeeze-to-Release mechanism allows for stepwise and controlled implantation

Flow

 12 mm sealing area minimized the risk of paravalvular leakage

Hydra

- 3 Bovine pericardium leaflet
- Self-expandable nitinol stent frame
- X Large cells facilitates easy access to the coronary arteries and flexibility of the delivery catheter
- A Supra-annular position of leaflets provides large effective orifice area and low trans-valvular gradient
- B High sealing skirt mitigates paravalvular leak

CENTRAL ILLUSTRATION: Safety and Clinical Performance of Hydra Self-Expanding Transcatheter Aortic Valve

TCTAP 2023

Aidietis, A.et al. J Am Coll Cardiol Intv. 200;15(1):93-104.

Medtronic EngagerTM Valve Now Enrolling in CE Pivotal Trial

- Self-expanding nitinol frame with self-positioning technology
 - → controlled release and accurate positioning
- Bovine pericardial tissue valve with supra annular valve function
- Broad Polyester Inflow Skirt
- TransApical / Direct Aortic access

Medtronic Engager valve platform has NOT obtained CE Mark. It is not approved in the EU or the US for commercialization.

> Eur Heart J. 2011 Apr;32(7):878-87. Epub 2010 Dec 9 Methodist Debakey Cardiovasc J. 2012 Apr;8(2):9-12.

VENUS A system

- First CFDA approved THV (Hangzhou Venus Medtech)
- Self-expanding nitinol frame
- Porcine pericardium
- Strong radial force designed for bicuspid aortic valve and severe calcificati

Venus valve

Outcome	CoreValve $(n = 27)$	Venus A-Valve $(n = 27)$	<i>P</i> value
30 days			
Death	1 (3.7)	1 (3.7)	1.00
Transient ischemic attack	1 (3.7)	0	-
Vascular complication			
Major	1 (3.7)	1 (3.7)	1.00
Minor	2 (7.4)	2 (7.4)	1.00
Bleeding			
Major	3 (11.1)	2 (7.4)	0.64
Minor	3 (11.1)	0	
Aortic regurgitation \geq mild	4 (14.8)	3 (11.1)	0.69
New permanent pacemaker	10 (37.0)	2 (7.4)	0.03
2 years			
Death	3 (11.1)	2 (7.4)	0.64

Liao et al. Catheterization and cardiovascular interventions 2017;89:528-533

Venus A-Valve Compared to Evolut R

Horst Sievert, TVT 2017

Venus A-Valve Adverse Events

	n = 37
New onset LBBB	5 (13.5%)
New onset complete heart block	5 (13.5%)
Pacemaker implantation	10 (27%)
Acute renal failure	2 (5.4%)
Throm bocytopenia	2 (5.4%)
Puncture site bleeding	2 (5.4%)
Puncture site infection	1 (2.7%)
Coronary artery occlusion	0
Stroke (ischemic)	1(2.7%)
Pericardial effusion	0
Aortic dissection	0
Device embolization/dislodgement	1 (2.7%)
Death	3 (8.1%)

Venus A-Valve in Bicuspid AV Venus-A trial

Venus A-Valve in Bicuspid AV Venus-A trial

TCTAP 2023

28th TCTAP 2023 Cathet Cardio Intervent, Volume: 95, Issue: 2, Pages: 332-338.

CVRF

Mean aortic gradient was 9.80 ± 4.77 mmHg at 1 year Mean effective orifice area was 1.83 ± 0.47 cm² at 1 year

No moderate or severe PVL at 12 months

Ninety-seven percent of patients achieved NYHA ≤ II

TCTAP 2023

Similar outcomes in bicuspid aortic valves and tricuspid aortic valve

Clinical outcomes	Tricuspid N = 68	Bicuspid N = 42	<i>p</i> Value	
All-cause mortality (%)	4.4%	0.0%	.285	
Cardiovascular mortality	2.9%	0.0%	.524	
Procedure success rate (%)	88.2	90.4	1.000	
All stroke (Major and Minor; %)	4.6%	4.8%	1.000	
Major vascular complication (%)	4.5%	0.0%	.158	
Moderate or severe PVL (%)	0.0%	0.0%	1.000	
New pacemaker implantation (%)	22.1%	14.3%	.454	
Mean aortic gradient (mmHg)	9.62 ± 4.75	9.92 ± 4.78	1.000	
Aortic valve area (cm ²)	1.84 ± 0.48	1.82 ± 0.47	1.000	
NYHA class I(%)	67.7%	73.8%	.631	

Cathet Cardio Intervent, Volume: 95, Issue: 2, Pages: 332-338

VitaFlow Library

- Hybrid density stent with double-layer skirts
- Bovine pericardial leaflet
- Retrievable delivery system
 - Motorized handle
 - Allowed for fast, stable, and accurate release and retrieval
- The delivery system whose distal end can be bent 360 degrees
 - Providing superior flexibility to help minimize blood vessel damage
 - Reducing the risk of complications

Mechanicallyexpandable valves

Direct Flow Medical Aortic valve

- 2 sizes matching valvuloplasty balloons
- Conformable cuff design and precise positioning
 → Reduces PV Leaks and AI
- "Surgical" valve design
- Repositionable & Removable
- Immediately competent
- Valve design allows hemodynamic assessment prior to final device deployment

* CE approval, anticipated at the end of 2012

Methodist Debakey Cardiovasc J. 2012 Apr;8(2):9-12

Direct Flow Medical Aortic valve

REPRISE III

The LOTUS Valve

- Controlled mechanical expansion; rapid pacing not needed during deployment
- Early valve function; hemodynamic stability during implantation
- Complete assessment before release; reposition/retrieve if not acceptable

REPRISE III Study Design

Severe aortic stenosis; extreme or high operative risk Annulus ≥20 mm and ≤27 mm; transfemoral access

- DAPT ≥1m OR warfarin + ASA or clopidogrel ≥1m (if anticoagulation needed)
- Clinical & echocardiographic follow-up: discharge or 7d, 30d, 6m, annually 1-5y

Performed by a neurologist, neurology fellow, neurology physician assistant, or neurology nurse practitioner
 CoreValve platform (includes CoreValve Classic and Evolut R)

* Centres with no LOTUS experience enrolled 2 roll-in patients before commencing enrollment of the evaluable cohort

Endpoints

1°Safety

Satisfied noninferiority $P_{\text{noninferiority}} = 0.003$

30-day all-cause mortality, stroke, life-threatening/major bleeding, stage 2/3 AKI, major vascular complications

1°Effectiveness ✓ 1-year Death, Disabling Stroke, ≥ Moderate PVL Satisfied superiority P_{superiority} < 0.001

Driven by in ≥moder 6.8% vs LC and disabl 3.6%, P=0

Driven by significant differences in ≥moderate PVL (CoreValve 6.8% vs LOTUS 0.9%, P<0.001)

and disabling stroke (7.1% vs 3.6%, P=0.02)

REPRISE III Patient Flow

*CV Classic N=153; Evolut R N=144

1Feldman TE, Reardon MJ, Rajagopal V,, et.aAl.. JAMA. 2018;319:27–37.

2 Year End Points

Key endpoints

- All cause mortality
- All cause mortality or disabling stroke

Other Clinical Outcomes

- All Stroke
- Disabling Stroke
- Repeat procedures
- Hospitalization
- Valve Thrombosis
- Pacer maker implantation

Echocardiography Outcomes

- EOA
- Mean Gradient
- PVL

•

Functional Outcome

NYHA

Key Baseline Characteristics

Demographics & Comorbidities		Echocardiography			
	CoreValve (N = 305)	LOTUS (N = 607)		CoreValve (N = 305)	LOTUS (N = 607)
Age, years	82.9±7.6	82.8±7.1	Aortic valve area (cm ²)	0.70±0.19 (280)	0.69±0.19 (541)
Female sex, %	52.1	50.1	Mod/Sev Aortic regurgitation, %	8.0 (289)	6.5 (558)
STS score, %	6.9±4.1	6.7±4.0	Mean aortic gradient (mmHg)	43.9±12.3 (294)	44.6±13.4 (575)
Atrial fibrillation, %	31.6	35.1	Peak aortic gradient (mmHg)	72.4±18.1 (294)	73.6±20.8 (575)
Pacemaker, %	19.0	17.8	Mod/Sev Mitral regurgitation, %	11.7 (283)	10.7 (554)
Prior stroke, %	14.5	11.3	LVEF (%)	55.9±11.8 (254)	56.1±11.4 (485)

1Feldman TE, Reardon MJ, Rajagopal V,, et.aAl.. JAMA. 2018;319:27–37.

Key Endpoints – REPRISE III

ITT; KM Event Rate ± 1.5 SE; log-rank P value

CV=CoreValve

Other Clinical Outcomes

ITT; KM Event Rate ± 1.5 SE; log-rank P value

CV=CoreValve

Additional VARC Events at 2 Years

2 Year – Intent-to-Treat

*New Pacemaker implantation rate excludes patients with a prior pacemaker (ITT; KM Event Rate; log-rank P value; Re-hospitalization for valve-related symptoms or worsening congestive heart failure (NYHA class III or IV);

REPRISE III – Primary Results

Primary Effectiveness Endpoint 1-year Death, Disabling Stroke, Moderate o<u>r Greater PVL</u>

101230 TCTAP 2023

Primary Safety and Effectiveness at 2 years

Intent-to-Treat

Primary Effectiveness Endpoint Death, Disabling Stroke, Moderate or Greater PVL

ITT; Binary event rates; P-value from Chi square test

Hemodynamics

Regurgitation through 2 years

Functional Status at 2 years

High Risk TAVR Randomized Trials

Death and Disabling Stroke at 2 years

¹Death or all stroke; ²Neurologic examinations were performed by a neurology specialist following any suspected stroke

High Risk TAVR Randomized Trials

Death at 2 years

The 2-year findings in REPRISE III continue to demonstrate the safety and effectiveness of the LOTUS valve

- At 2 years compared to CoreValve LOTUS patients experienced:
 - Less moderate or greater paravalvular leak
 - Fewer disabling strokes
 - Fewer repeat procedures
 - More valve thrombosis
 - More new pacemaker implantations
 - Smaller valve areas and higher gradients
- At 2 years, more LOTUS patients had improvements in NYHA class compared to CoreValve
- Ongoing follow-up will provide safety and performance information on the LOTUS valve to at least 5 years

The LOTUS *Edge*™

• 100% repositionable

 Adaptive Seal around the outside of the valve frame to help reduce PVL

The LOTUS *Edge*™

Compressed Valve

Step 1

The artificial valve is compressed onto a catheter that travels through the body to the heart, inside of a large blood vessel that leads to the diseased aortic valve.

Step 2

The physician expands the replacement valve, pushing the diseased parts of the aortic valve out of the way

Step 3

The new valve begins to function immediately and restore healthy blood flow. Once the valve is in place, the physician removes the catheter, closes the incision, and the procedure is complete

ICTAP 202

VIVE Mitral Valve

MITRAL Trial Mitral Implantation of TRAnscatheter values

90 patients extremely high surgical risk (STS PROM >15% or M&M >50%)

MITRAL TrialValve-in-Valve Arm

Valve Type	n
Edwards Perimount Family (Perimount, Magna Ease, Baxter)	16
Edwards CE Standard	3
Medtronic Mosaic	6
St. Jude Biocor/Epic	5

Failure mode	n(%)
Stenosis	18 (60%)
Regurgitation	8 (26.7%)
Both	4 (13.3%)

All CT scans reviewed by Core Lab prior to presentation

*All patients presented at case review call

38 patients presented in case review call*

 \rightarrow

30 patients treated

Last implant 10-17-17 Not all data monitored yet (this is a preliminary analysis) 8 patients excluded: 3= RV dysfunction 2= Became unstable requiring pressors 1= No central MR, mostly PVL 1= EF barely 20%, cohort "C" 1= Risk of LVOTO

TCTAP 2023

MITRAL Trial

Mitral ViV Procedural Outcomes

100% Transseptal access

Outcomes	In-Hospital n=30	30 Days n=30
All-Cause Mortality	0	1 (3.3%)
Cardiovascular death	0	0
Non-Cardiac death	0	1 (3.3%) Asphyxia due to chocking at home on POD #29 after taking 6 pills at same time (confirmed by autopsy)

Data not yet adjudicated, may be subject to change.

Mitral Viv Primary Safety Endpoints

	n=30
Technical success at exit from Cath Lab	30 (100%)
Procedural Success at 30 days	27 (90%)
Death at 30 days	1 (3.3%)
MVA < 1.5 cm2	2 (6.7%)

MITRAL Trial

Intraprocedural or In-Hospital Complications

	ViV n=30 n (%)
Valve embolization	0
LVOT Obstruction with hemodynamic compromise	0
Left ventricular perforation	0
Pericardial effusion requiring pericardiocentesis	0
Conversion to open heart surgery during index procedure	0
Paravalvular leak closure	0
Myocardial infarction requiring intervention	0
Stroke	0
New pacemaker	1 (3.3%)
Blood transfusion (GU bleed)	1 (3.3%)
Vascular complications (hematoma=3)	3 (10%)

Mayra Guerrero, TVT 2018

Echocardiogram at 30 days

	ViV n=29*
Ejection Fraction (%)	51.1 (±12.4)
Mean MVG (mmHg)	5.8 (±2.13)
MVA (cm2)	1.86 (±0.68)
Peak LVOT gradient (mmHg)	6.9 (±6.1)
Mitral Regurgitation	
None or Trace	29 (100%)
1 (+)	0
2(+)	0
≥3 (+)	0
* 1 patient died on POD #29	

28th TCTAP 2023

MITRAL Trial

NYHA Class at 30 days

Mayra Guerrero, TVT 2018

Mitral ViV All-cause Mortality

Median follow up : 408 days

Index Cardia Surgery

•Median 9 years since last cardiac surgery (IQR 5-12).

- 1-5 previous cardiac surgeries per patient.
- 71% of patients had 1 previous cardiac surgery.

Surgical Mitral Bioprosthesis

Туре	n	%	Size	n	%
Edwards Pericardial / Porcine	171	52.9	23 mm	2	0.6
Medtronic Mosaic	67	19.2	25 mm	42	12
Medtronic Hancock	49	14	27mm	128	36.7
St Jude Epic	26	7.4	29 mm	110	31.5
St Jude Biocor	14	4	31 mm	48	13.8
Braile Porcine Biomed ica	4	1.1	33 mm	9	2.6
Other / Unknown	18	5.2	Other / unknown	10	2.9

Surgical Mitral Ring

Туре	n	%	Size	n	%
Edwards Physio I / II	50	56.8	26 mm	11	12.5
Medtornic Duran	7	8	28 mm	29	33
St Jude Seguin	6	6.8	30 mm	14	15.9
Edwards Classic	5	5.7	32 mm	9	10.2
Medtronic other	4	4.5	34 mm	6	6.8
Sorin Carbomedics	2	2.2	36 mm	2	2.3
Other / Unknown	14	15.9	Other / unknown	17	19.3

VIVID Registry Access during Mitral ViV procedure

Direct left atrium

Femoral vein

Jugular Vein

Total trans-septal

Transapical

Ran Kornowski, TVT 2018

28th TCTAP 2023

VIVID Registry

Mitral ViV Procedural Outcomes

	Total n=437	Mitral Valve-in-Valve n=349	Mitral Valve-in-Ring n=88	P Value
30-day death	8.5%	7.7%	11.4%	0.15
30-day cardiovascular death	6.9%	6%	10.2%	0.62
Major stroke	2.5%	2.9%	1.1%	0.33
Acute kidney injury (VARC II/III)	14.4%	10.6%	29.5%	<0.001

WIVID Registry Composite (30d event-free) End point*

Mitral Valve-in-Valve

Mitral Valve-in-Ring

*Composite end point included 30-day survival free from significant MR (moderate or more) or clinically-evident LVOT obstruction. The composite of adverse events occurred in 39 patients undergoing valve-in-valve and 25 patients that underwent valve-in-ring.

VIVID Registry

Transseptal SAPIEN 3 MViV is currently the most common approach

LV function according to access route

Dvir D. JACC CV Interv 2016.

Transcatheter MVL: 7-year experience Procedural findings and outcomes

	Entire cohort (n = 91)	Valve-in-valve (n = 34)	Valve-in-ring (n = 30)	Valve-in-MAC (n = 27)	P-value
Procedural findings					
Approach					
Transeptal	84 (92.3)	32 (94.1)	30 (100)	22 (81.5)	0.027
Transapical/Hybrid surgery	7 (7.7)	2 (5.9)	0	5 (18.5)	
Prosthesis type					
SAPIEN XT	37 (40.7)	15 (44.1)	17 (58.6)	5 (18.5)	0.008
SAPIEN 3	53 (58.2)	19 (55.9)	12 (41.4)	22 (81.5) ^{a,b}	
Prosthesis size (mm)					
23	6 (6.6)	2 (5.9)	4 (13.8)	0	< 0.001
26	49 (53.8)	16 (47.1)	22 (75.9) [±]	11 (40.7) ^b	
29	35 (38.5)	16 (47.1)	3 (10.3) ^r	16 (59.3)	
Post-dilatation	17 (18.7)	2 (5.9)	10 (35.7) [±]	5 (18.5)	0.009
Need for a second valve	13 (14.3)	1 (2.9)	5 (16.7)	6 (22.2)*	0.043
Procedural outcomes					
Technical success	77 (84.6)	32 (94.1)	24 (80.0)	21 (77.7)	0.196
Death	1 (1.1)	1 (2.9)	0	0	0.999
Conversion to surgery	2 (2.2)	0	2 (6.7)	0	0.192
Tamponade	0	-			-
Haemodynamically significant LVOT	3 (3.3)	1 (2.9)	0	2 (7.4)	0.388
obstruction (gradient ≥50 mmHg)					
Prosthesis embolization	2 (2.2)	1 (2.9)	1 (3.4)	0	0.999

Transcatheter MVL: 7-year experience 30 day outcomes

	Entire cohort (n = 91)	Valve-in-valve (n = 34)	Valve-in-ring (n = 30)	Valve-in-MAC (n = 27)	P-value
Death	7 (7.7)	2 (5.9)	2 (6.7)	3 (11.1)	0.788
Surgical mitral valve replacement	4 (4.4)	0	4 (13.3)	0	0.017
Stroke	4 (4.4)	2 (5.9)	0	2 (7.4)	0.455
Major	2 (2.2)	0	0	2 (7.4)	0.086
Minor	2 (2.2)	2 (5.9)	0	0	0.329
Life-threatening or fatal bleeding	4 (4.4)	2 (5.9)	1 (3.3)	1 (3.7)	0.999
Major vascular complications	6 (6.7)	2 (5.9)	2 (6.7)	2 (7.4)	0.999
LVOT obstruction (ΔP increase >30 mmHg)	8 (8.8)	2 (5.9)	4 (13.3)	2 (7.4)	0.648
Late valve embolization	0		(1997) (1997)		_
Slight late displacement of the THV	3 (3.3)	0	0	3 (11.1)	0.023
THV thrombosis	8 (8.8)	3 (8.8)	2 (6.7)	3 (11.1)	0.900

LVOT, left ventricular outflow tract; MR, mitral regurgitation; THV, transcatheter heart valve; TMVI, transcatheter mitral valve implantation; ΔP , basal maximal gradient.

Transcatheter MVI: 7-year experience Cumulative Clinical Outcomes

	Entire cohort (n = 91)	Valve-in-valve (n = 34)	Valve-in-ring (n = 30)	Valve-in-MAC (n = 27)	P-value
Death					
n (%)	30 (33.0)	8 (23.5)	10 (33.3)	12 (44.4)	
HR (95% CI)		1.0	0.82 (0.29-2.31)	2.39 (1.01-5.86) ^a	0.046
Cardiovascular death					
n (%)	24 (26.4)	5 (14.7)	10 (33.3)	9 (33.3)	
HR (95% CI)		1.0	1.30 (0.40-4.16)	2.80 (0.94-8.46)	0.125
Death or surgical valv	ve replacement				
n (%)	36 (39.6)	8 (23.5)	16 (53.3)	12 (44.4)	
HR (95% CI)		1.0	1.58 (0.65-3.85)	2.34 (0.96-5.75)	0.175
Surgical mitral valve r	replacement				
n (%)	7 (7.7)	0	7 (23.3)	0	
HR (95% CI)		1.0			1

Transcatheter MVL: 7-year experience All cause death CV death

TCTAP 2023

Transcatheter MVL: 7-year experience All cause death CV death

TCTAP 2023

Prediction of LVOT obstruction

High risk for LVOT obstruction

Vmax 301 cm/s 241 cm/s • 3.7% in the studied population. 36 mmHg^{iHg} Max PG Mean PG 25 mmHg • More common after Valve-in-Ring (8% vs. 2.6% in 51.2 cm VTI Valve-in-Valve , p=0.03). --200 -- 300

Mal-positioning

- 29 mal-positioning events (6.6%).
- 20 Implantation of another transcatheter device (4.6%).

Delayed Mal-positioning

Mitral Valve-in-Valve

After 2 months

Delayed malpositioning (>1 week) in 1.1%.

Residual stenosis

One-Year Outcomes of Mitral VIV using SAPIEN 3

1529 patients with MViV in STS/ACC registry underwent TMVR with SAPIEN 3

Brian Whisenant, 2020 JAMA

One-Year Outcomes of Mitral VIV using SAPLEN 3

Figure 1. SAPIEN 3 Transcatheter Heart Valve, Transseptal, and Transapical Access Approaches

One-Year Outcomes of Mitral VIV using APIEN 3

No./total No. (%) of patients			
Transseptal (n = 1326)	Transapical (n = 203)	Combined (N = 1529)	P value
138 (15.8)	37 (21.7)	175 (16.7)	.03
438	97	535	NA
36 (3.7)	11 (5.7)	47 (3.9)	.07
27 (3.3)	5 (3.5)	32 (3.3)	.95
8 (0.8)	1 (0.5)	9 (0.8)	.78
19 (1.6)	6 (3.1)	25 (1.8)	.13
21 (2.0)	5 (2.8)	26 (2.1)	.44
4 (0.3)	2 (1.2)	6 (0.5)	.17
53.3 (11.52)	52.8 (13.11)	53.2 (11.76)	.77
7.0 (2.94)	7.0 (2.61)	7.0 (2.89)	.99
40.2 (27.26)	35.3 (26.37)	39.4 (27.14)	.27
143/290 (49.3)	30/62 (48.4)	173/352 (49.1)	.89
119/290 (41.0)	26/62 (41.9)	145/352 (41.2)	.90
23/290 (7.9)	5/62 (8.1)	28/352 (8.0)	>.99
5/290 (1.7)	1/62 (1.6)	6/352 (1.7)	>.99
	No./total No. (%) of p Transseptal (n = 1326) 138 (15.8) 438 36 (3.7) 27 (3.3) 8 (0.8) 19 (1.6) 21 (2.0) 4 (0.3) 53.3 (11.52) 7.0 (2.94) 40.2 (27.26) 143/290 (49.3) 119/290 (41.0) 23/290 (7.9) 5/290 (1.7)	No./total No. (%) of patients Transseptal (n = 1326) Transapical (n = 203) 138 (15.8) 37 (21.7) 438 97 36 (3.7) 11 (5.7) 27 (3.3) 5 (3.5) 8 (0.8) 1 (0.5) 19 (1.6) 6 (3.1) 21 (2.0) 5 (2.8) 4 (0.3) 2 (1.2) 53.3 (11.52) 52.8 (13.11) 7.0 (2.94) 7.0 (2.61) 40.2 (27.26) 35.3 (26.37) 143/290 (49.3) 30/62 (48.4) 119/290 (41.0) 26/62 (41.9) 23/290 (7.9) 5/62 (8.1) 5/290 (1.7) 1/62 (1.6)	No./total No. (%) of patientsTransseptal (n = 1326)Transapical (n = 203)Combined (N = 1529)138 (15.8) $37 (21.7)$ $175 (16.7)$ 438 97 535 36 (3.7) $11 (5.7)$ $47 (3.9)$ 27 (3.3) $5 (3.5)$ $32 (3.3)$ 8 (0.8) $1 (0.5)$ $9 (0.8)$ 19 (1.6) $6 (3.1)$ $25 (1.8)$ 21 (2.0) $5 (2.8)$ $26 (2.1)$ 4 (0.3) $2 (1.2)$ $6 (0.5)$ $53.3 (11.52)$ $52.8 (13.11)$ $53.2 (11.76)$ 7.0 (2.94) $7.0 (2.61)$ $7.0 (2.89)$ 40.2 (27.26) $35.3 (26.37)$ $39.4 (27.14)$ 143/290 (49.3) $30/62 (48.4)$ $173/352 (49.1)$ 119/290 (41.0) $26/62 (41.9)$ $145/352 (41.2)$ 23/290 (7.9) $5/62 (8.1)$ $28/352 (8.0)$ 5/290 (1.7) $1/62 (1.6)$ $6/352 (1.7)$

Brian Whisenant, 2020 JAMA

Comprehensive midterm evaluation of VIVID Registry

Median follow up : 492 days

Transcatheter heart valves in failed bioprosthetic surgical valves (n =1079)

Mitral valve in valve (n=857)

Mitral valve in ring (n=222)

Matheus Simonato, 2021 circulation

One-Year Outcomes of Mitral VIV using SAPIEN 3

TCTAP 2023

Brian Whisenant, 2020 JAMA

Comprehensive midterm evaluation of VIVID Registry

1011 TCTAP 2023

Matheus Simonato, 2021 circulation

VRF

Comprehensive midterm evaluation of VIVID Registry

Matheus Simonato, 2021 circulation

VRF
MITRAL trial Valve-in-Valve Arm 1-Year Outcomes

Patient Flow

Valve Type	
Edwards perimount Family (perimount Magna Ease, Baxter)	1.44
Medtronic Mosaic	
St. Jude Biocor/Epic	
Edwards CE Standard	

8 patients excluded: 3= Right Ventricular Dysfunction 2= Became unstable requiring pressors 1= No central MR, mostly PVL. 1= LV EF barely 20%, considered cohort "C" 1= Risk of LVOTO

Failure mode	n(%)
Regurgitation	18 (60%)
Stenosis	8 (26.7%)
Both	4 (13.3%)

*All patients presented at case review call All CT scans reviewed by Core Lab prior to presentation

© Mayo Clinic

Mayra Guerrero, 2021 JACC Prospective Evaluation of Transseptal TMVR for Failed Surgical Bioprostheses

MITRAL trial Valve-in-Valve Arm 1-Year Outcomes

1012 1023

Mayra Guerrero, 2021 JACC Prospective Evaluation of Transseptal TMVR for Failed Surgical Bioprostheses

MITRAL trial Valve-in-Valve Arm 1-Year Outcomes

28th TCTAP 2023 Mayra Guerrero, 2021 JACC Prospective Evaluation of Transseptal TMVR for Failed Surgical Bioprostheses

Vive Tricuspid Valve

National Trends and Outcomes in Isolated Tricuspid Valve Surgery

Zack, C.J. et al. J Am Coll Cardiol. 2017

Surgical Mortality – Isolated TVR/TVr

Alqahtani F, et al. J Am Heart Assoc 2017

Challenges of Transcatheter TV Therapies

- Large tricuspid annulus size
- Nonplanar and elliptical annulus shape
- Fragility of tricuspid annular tissue and narrower annular shelf in comparison to mitral annulus
- Noncalcified annulus in secondary TR
- Angulation in relation to SVC and IVC
- Trabeculated RV, muscular bands and chordae tendinae

- Thin right ventricular free wall
- Proximity of AV node and right His bundle branch
- Proximity of the RCA to annulus and risk of coronary injury
- Risk of occlusion of coronary sinus, vena cava or outflow tract
- Slow-flow in right ventricle
- Patients with pacemaker or defibrillator leads

Rodés-Cabau et al. J Am Coll Cardiol. 2016;67:1829-45

Transcatheter Tricuspid Solutions

Approaches

- 1. Superior Vena Cava
- 2. Inferior Vena Cava
- 3. Transapical
- 4. Transatrial

Anatomic Target

- 1. Leaflet
- 2. Annulus
- 3. IVC

Transcatheter Tricuspid Landscape

Asmarats et al. J Am Coll Cardiol. 2018;71(25):2935-56

Transcatheter Tricuspid valve : Devices

Transcatheter Tricuspid Valve Intervention : Devices

		Baseline chare	acteristics			Procedural outco	mes		
Device	Study	Age, years	NYHA III/IV	CIED	Functional TR	Procedural success	Conversion to surgery	Residual TR ≥ grade 3	30-day mortality
TriClip	TriValve $(n = 249)^{46}$	77 ± 9	238 (96)	74 (30)	223 (90)	192 (77)	1 (0.4)	57 (23)	-
	TRILUMINATE $(n = 85)^{43,49}$	78 ± 8	64 (75)	12(14)	71 (84)	76/85 (91)	0(0)	36/83 (43)	0(0)
Pascal	Fam et al. $(n = 28)^{50}$	78 ± 6	28 (100)	1(3)	26 (92)	24 (86)	0(0)	4/26 (15)	2(7)
	CLASP-TR $(n = 34)^{51}$	76 ± 10	27 (79)	4(12)	29 (88)	24 (80)	0(0)	22/27 (81)	0(0)
Forma	Perlmann et al. $(n = 18)^{54}$	76 ± 10	17 (94)	3(17)	18 (100)	16 (89)	1 (6)	7/16 (44)	0(0)
	Kodali S. $(n = 29)^{53}$	76 ± 8	25 (86)	7 (24)	29 (100)	27 (93)	3 (10)	_	2(7)
Mistral	Planer et al. $(n = 7)^{55}$	73 ± 7	-	1(14)	7 (100)	7 (100)	0 (0.0)	-	0(0)
Trialign	SCOUT I $(n = 15)^{58,59}$	74 ± 7	10 (67)	0(0)	15 (100)	15 (100)	0(0)	-	0(0)
TriCinch	PREVENT $(n = 24)^{62}$	74 ± 8	14 (58)	-	-	18 (81)	-	~45%	0(0)
Cardioband	TRI-REPAIR $(n = 30)^{67}$	75 ± 7	25 (83)	4(13)	30 (100)	30 (100)	0(0)	5 (28)	0(0)
	Davidson et al. $(n = 30)^{70}$	77 ± 8	21 (70)	7 (23)	30 (100)	28 (93)	0(0)	15 (55)	0(0)
Caval devices	Lauten et al. $(n = 25)^{74}$	74 ± 8	25 (100)	9 (36)	24 (96)	23 (92)	1 (4)	20 ¹⁰ 10	3 (12)
	TRICAVAL $(n = 14)^{83}$	77 [68-82]	12 (86)	_ ` `	_ ` `	14 (100)	4 (29)	3 <u>1</u> 3	3 (21)
NaviGate	Hahn et al. $(n = 30)^{87}$	78 [70-80]	24 (86)	9 (30)	30 (100)	26 (87)	2 (7)	0/26(0)	3 (10)
Evoque	Fam et al. $(n = 25)^{93}$	76 ± 3	22 (88)	9 (36)	19 (76)	23 (92)	0(0)	1 (4)	0(0)
LuX valve	Lu et al. $(n = 12)$ (96)]	69 [66-74]	12 (100)	5 (42)	-	12 (100)	-	1 (8)	0(0)

Progress in Cardiovascular Diseases 69 (2021) 89–100

TV and Surrounding Structures

28th TCTAP 2023

Etiologies of TR

Morphological Classification	Disease Subgroup	Specific Abnormality
Primary leaflet abnormality: 25%	Congenital	Ebstein's anomaly Tricuspid valve tethering associated with perimembranous VSD and VSA Other (giant right atrium)
	Acquired disease	Carcinoid Degenerative (myxomatous) Endocarditis Endomyocardial fibrosis Iatrogenic (pacing leads, RV biopsy) Rheumatic Toxins Trauma Other (e.g., ischemic papillary muscle rupture)
Secondary ("functional"): 75%	Left heart disease	LV dysfunction or valve disease
	Right ventricular dysfunction	RV cardiomyopathy (e.g., ARVD) RV ischemia RV volume overload
	Pulmonary Hypertension	Chronic lung disease Left-to-right shunt Pulmonary thromboembolism
	Right atrial abnormalities	Atrial fibrillation
Other	Post-operative	Recurrent TR post-surgical intervention

TTVI sytems selection

Figure 6. Proposed algorithm for the selection of TTVI systems. CIED: cardiac implantable electronic device; T-TEER: tricuspid transcatheter edge-to-edge repair; TTVR: transcatheter tricuspid valve replacement

Criteria for device selection

Table 3. Anatomical criteria for device selection.

Strategy	Favourable anatomy	Feasible anatomy	Unfavourable anatomy
Leaflet approximation	Small septolateral gap ≤7 mm ¹⁰ Anteroseptal jet location Confined prolapse or flail Trileaflet morphology	Septolateral coaptation gap >7 but ≤8.5 mm ⁶⁵ Posteroseptal jet location Non-trileaflet morphology Incidental CIED RV lead (i.e., without leaflet impingement)	Large septolateral coaptation gap >8.5 mm ⁶⁵ Leaflet thickening/shortening (rheumatic, carcinoid)/perforation Dense chordae with marked leaflet tethering Anteroposterior jet location Poor echocardiographic leaflet visualisation CIED RV lead leaflet impingement Unfavourable device angle of approach
Annuloplasty	Annular dilatation as primary mechanism of TR Mild tethering (tenting height <0.76 cm, tenting area<1.63 cm ² , tenting volume [3D] <2.3 mL) ^{110,111} Central jet location Sufficient landing zone for anchoring	Moderate tethering (tethering height ≥ 0.76 cm but <1.0 cm, tenting area >1.63 but <2.5 cm ² , tenting volume [3D] ≥ 2.3 mL but ≤ 3.5 mL) ^{110,111} Incidental CIED RV lead (i.e., without leaflet impingement)	Excessive annular dilatation (exceeding device size) Severe tethering (tethering height >1.0 cm, tenting volume >3.5 mL). Poor echocardiographic annular visualisation ^{110,111} Annular proximity of RCA CIED RV lead leaflet impingement
Orthotopic valve implantation	Previous surgical repair or bioprosthetic valve replacement Leaflet thickening/shortening (rheumatic, carcinoid) Incidental CIED RV lead (i.e., without leaflet impingement) Any leaflet morphology	Large coaptation gap CIED RV lead leaflet impingement	Excessive annular dilatation (exceeding device size) Unfavourable device angle of approach Severe right ventricular dysfunction
Heterotopic valve implantation 3D: three-dimens	Appropriate caval diameters (and intercaval distance) No option for direct valve treatment sional; CIED: cardiac implantable electronic de	evice; RA: right atrium; RCA: right coronary a	Proximity of the RA to the orifice of the liver veins (<10-12 mm) Severely increased pulmonary artery and RA pressures due to the risk of fracture of bicaval valved stents rtery; RV: right ventricular; TR: tricuspid

EuroIntervention 2021;17:791-808

Pathoanatomy of Functional TR

TCTAP 2023

Asmarats et al. J Am Coll Cardiol. 2018;71(25):2935-56

CT Pre-Procedural Workup

TCTAP 2023

Asmarats et al. J Am Coll Cardiol. 2018;71(25):2935-56

Key Considerations During Orthotopic TTVR

- Tricuspid annular dimensions (anteroposterior and septal-lateral diameters, perimeter, area)
- Right internal jugular vein and SVC size
- Course of the RCA relative to the TA
- Distance from RCA to the anterior and posterior tricuspid leaflet insertion
- Risk for RVOT obstruction

Orthotopic TTVR NaviGate Tricuspid Valved Stent

Components Specifications

- Temperature Shape Memory NiTinol Tapered Stent
- Height profile 21mm, Truncated Cone configuration
- Annular Winglets for secure anchoring of TV annulus and tricuspid valve leaflets
- Sizes = 36mm, 40mm, 44mm, 48mm, and 52mm.
- Chemically Preserved Xenogeneic Pericardium

Delivery System

- Presently 35F at the distal capsule
- · 24F catheter shaft
- Two degrees of motion at tip
- 80° Articulation
- · Controlled Valve Release
- . The delivery use the same valve configuration

Asmarats et al. J Am Coll Cardiol. 2018;71(25):2935-56

Orthotopic TTVR Trans Jugular Requirements

Orthotopic TTVR Right Atrial Access

Initial valve deployment with RCA injection

Retracting the capsule: Exposing Ventricular Tines

Coaxial View 1

Coaxial View 2

Short-axis View

Valve Release: Complete Deployment

Coaxial View 2

Short-axis View

Coaxial View 1

Final Result

- Trivial central and trivial paravalvular regurgitation
- Peak/mean transtricuspid gradient = 1.5 and 0.3 mmHg

Outcomes : Transcatheter vs. Medical treatment

ViV Replacement for Bioprosthetic TV Degeneration

VIVID Registry – DataLock 2015

Transcatheter Tricuspid VIV

VIVID Registry – TVIV Baseline Characteristics

	All Patients	Melody Patients	Sapien Patients	P Value
Variable	N=156	N=94	N=58	
Patient age (yrs)	40 (5-84)	27 (5-84)	53 (8-81)	<0.001
Etiology of Original TV Disease (prior to TVR)				<0.001
Congenital	87 (56%)	63 (67%)	21 (36%)	
Acquired	69 (44%)	31 (33%)	37 (64%)	
Atrial fibrillation or flutter	60 (38%)	36 (38%)	24 (41%)	0.71
Acute/chronic renal insufficiency	20 (13%)	9 (10%)	10 (17%)	0.17
COPD/Lung disease	10 (6%)	6 (6%)	4 (7%)	0.89
Prior history of endocarditis	31 (20%)	14 (15%)	16 (30%)	0.03
Existing permanent pacemaker	62 (39%)	37 (39%)	22 (38%)	0.91
Epicardial	38 (24%)	23 (25%)	14 (24%)	
Transvenous	24 (15%)	14 (15%)	8 (14%)	

VIVID Registry –TVIV TV function and Prosthesis-Related Data

	All Patients	Melody Patients	Sapien Patients	P Value
Variable	N=156	N=94	N=58	
Age of TV bioprosthesis (yrs) (N=146)	7.4 (1-38)	7.2 (1.2-34)	8.0 (1-38)	0.37
Labeled size of TV bioprosthesis (mm) (N=146)	28 (18-35)	27 (18-35)	31 (24-33)	<0.001
29mm or larger	74 (51)	33 (38%)	39 (68%)	<0.001
TR severity				0.06
None/trivial	19 (12%)	7 (8%)	12 (20%)	
Mild	24 (15%)	14 (15%)	9 (16%)	
Moderate	45 (29%)	26 (28%)	16 (28%)	
Severe	68 (44%)	47 (50%)	21 (36%)	
Mean Doppler TV inflow gradient (mmHg)	9 (2-29)	9 (2-29)	9 (2-24)	0.86
10-14	59 (38%)	37 (39%)	19 (33%)	
≥15	15 (10%)	9 (10%)	6 (10%)	

VIVID Registry –TVIV TV function and Prosthesis-Related Data

	All Patients	Melody Patients	Sapien Patients	P Value
Variable	N=156	N=94	N=58	
Invasive Pressure Measurements (mmHg)				
Right atrial mean pressure, N=136	16 (6-37)	17 (6-30)	15 (6-37)	0.5
Right ventricular end-diastolic pressure, N=127	8 (1-22)	9 (1-22)	8 (2-16)	0.4
Right ventricular systolic pressure, N=132	30 (12-92)	29 (12-70)	33 (14-74)	0.5

VIVID Registry – TVIV TV function and Prosthesis-Related Data

VIVID Registry -TVIV Procedural Variables for Attempted TVIV

	All Patients	Melody Patients	Sapien Patients	P Value
Variable	N=152	N=94	N=58	
Vascular access				0.01
Femoral vein	105 (69%)	65 (69%)	40 (69%)	
Jugular vein	42 (28%)	29 (31%)	13 (22%)	
Surgical via right atrium	5 (3%)	0 (0%)	5 (9%)	
General anesthesia	137 (90%)	87 (93%)	50 (88%)	0.32
Intraprocedural echocardiography performed	125 (82%)	77 (82%)	48 (83%)	0.91
Transthoracic	10 (7%)	8 (9%)	2 (4%)	
Transesophageal	77 (51%)	37 (39%)	42 (72%)	<0.001
Intracardiac	32 (21%)	29 (31%)	3 (5%)	<0.001
Rapid pacing used during implantation	33 (22%)	2 (2%)	31 (54%)	<0.001
Predilation/balloon sizing before implantation	81 (53%)	61 (65%)	20 (35%)	<0.001
Bioprosthetic valve presented before TVIV	9 (6%)	4 (4%)	5 (9%)	0.30
Valve postdilated	40 (26%)	38 (40%)	2 (4%)	<0.001

VIVID Registry –TVIV Mean Doppler RA-RV gradient

VIVID Registry – TVIV Post-TVIV RA-RV gradient

VIVID Registry – TVIV Survival after Tricuspid ViV

VIVID Registry – TVIV Survival free from TVIV reintervention

Survival free from TVIV reintervention or significant TS (mean gradient ≥10) or TR

VIVID Registry – TVIV Survival after Tricuspid ViV

Survival free from TVIV reintervention or significant TS (mean gradient ≥10) or TR

VIVID Registry – TVIV Summary

- Tricuspid valve-in-valve procedures are increasingly performed using Melody and SAPIEN XT/ SAPIEN 3 THV devices.
- Although half the patients had etiology of congenital heart disease, most of them were adults at the time of VinV.
- Specific considerations in these cases include tx of large surgical valves, coaxilaity issues and transvalvular pacemaker leads.
- SAPIEN and Melody implantation for this indication show similar clinical outcomes.

Outcomes After Current Transcatheter TV Intervention

TriValve Registry – Mid-Term Results

312 high-risk patients with severe TR (93% of functional) at 18 centers

Taramasso M, et al. J Am Coll Cardiol Intv 2019;12:155–65

TriValve Registry Patients' Clinical Characteristics

	N=312
Age (years)	76 ± 9
Female	171 (55)
EuroScore II	9 ± 8
Functional TR	288 (93)
Previous left side valve intervention (surgical/transcatheter/both)	84/24/3
Transvalvular tricuspid lead	71 (22)
NT pro-BNP, pg/mL	2759 (1298-5627)
Ascites	87 (28)
Peripheral oedema	265 (85)
NYHA functional class III-IV	297 (95)
Previous admission for RV failure	216 (69)

Values are n (%), mean (SD) or median (IQR)

Taramasso M, et al. J Am Coll Cardiol Intv 2019;12:155–65

TriValve Registry Echocardiographic Characteristics

	N=312
Right atrial volume (ml)	111 ± 82
LV Ejection Fraction (%)	49 ± 13
Tricuspid Vena Contracta (cm)	1.1 ± 0.5
Tricuspid Regurgitant Volume (ml)	54 ± 34
Tricuspid Antero-Septal diameter (mm)	46.9 ± 9
Tricuspid EROA (mm2)	80 ± 60
TAPSE (mm)	16.2 ± 5
S-TDI (cm/sec)	10 ± 7
Coaptation Depth (mm)	9.5 ± 4.1
Tenting Area (cm2)	2.8 ± 1.7
Systolic Pulmonary Artery Pressure (mmHg)	41 ± 15

Values are mean (SD)

Echocardiographic Assessment of TR Severity

Current recommendations for grading the severity of chronic TR ¹							
Parameters	Mild		Mod	lerate	Sev	/ere	
Structural							
TV morphology	Normal or mildly abnormal leaflets	S	Moderatel leaflets	y abnormal	Severe valv	e lesions	
RV and RA size	Usually normal		Normal or mild dilatation		Usually dilated		
IVC diameter	Normal < 2 cm		Normal or mildly dilated 2.1-2.5 cm		Dilated > 2.5 cm		
Qualitative							
Color flow jet area	Small, narrow, o	entral	Moderate	central	Large centr eccentric w	al jet or all-impinging jet	
Flow convergence zone	Not visible, transient or small		Intermediate		Large throughout systole		
CWD jet	Faint/partial/parabolic		Dense, parabolic or triangular		Dense, often triangular		
Semi-quantitative							
Color flow jet area (cm ²)	Not defined		Not define	ed	>10		
VCW (cm)	<0.3		0.3-0.69		≥0.7		
PISA radius (cm)	≤0.5		0.6-0.9		>0.9		
Hepatic vein flow	Systolic dominar	ice	Systolic blunting		Systolic flow reversal		
Tricuspid inflow	A-wave dominar	nt	Variable		E-wave >1.0 m/sec		
Quantitative							
EROA (mm ²)	<20		20-39	≥ 40			
RVol (2D PISA) (mL)	<30		30-44	≥45			
Proposed extended grading scheme ²							
Variable	Mild	Modera	ate	Severe	Massive	Torrential	
VC (biplane) (mm)	< 3	3-6.9	.9 7-13		14-20	≥ 21	
EROA (PISA)(mm ²)	< 20	< 20 20-3		40-59	60-79	≥ 80	
3D VCA or quantitative EROA(mm ²)				75-94	95-114	≥ 115	

TriValve Registry Procedural and 30-day outcomes

	N=280
Procedural Success	204 (72.8)
Thirty-day Mortality	10 (3.6)
Major bleeding	5 (1.7)
Stroke	3 (1.0)
Myocardial infarction requiring right coronary artery stenting	2 (0.7)
Conversion to surgery	4 (1.4)
Respiratory failure	2 (0.7)
Device detachment	1 (0.3)
Ventricular arrhythmia	1 (0.3)

Values are n (%)

Transcatheter Therapies for TR Reduction in TR Severity

Taramasso M, et al. J Am Coll Cardiol Intv 2019;12:155-65

Transcatheter Therapies for TR Changes in Functional Status

- Patients with ascites: from $27\% \rightarrow 14\%$ (p=0.006)
- Patients with peripheral oedema: from 89% to 39% (p=0.001)

Taramasso M, et al. J Am Coll Cardiol Intv 2019;12:155–65

TriValve Registry Follow-up

Overall Survival according to Procedural Success

Survival Isolated TTVI according to Procedural Success

Procedural success and higher values of sPAP at baseline were independently associated with increased mortality at follow-up

TriValve Registry Summary

- Procedural success, defined as successful device implantation and residual TR of ≤ 2+, achieved in 72.8%
- At a median follow-up of 6 months, improvements seen in NYHA class and prevalence of ascites and peripheral edema
- At 1.5 years, the actuarial survival rate was $77.2 \pm 5.9\%$
- Procedural success (HR 0.18) and systolic pulmonary artery pressure (HR 17.0) independently predicted mortality

TriValve Registry Conclusions

- Several challenges in TTVI (anatomy, imaging, clinical, definitions)
- TTVI is feasible with different technologies, with a reasonable overall procedural success rate and it is associated with low mortality and significant clinical improvement
- Mid-term survival is "favorable" in this high risk population
- Patient selection is crucial (anatomical and clinical)

Ongoing and Future Studies on TTVI

Ongoing studies on transcatheter therapies for tricuspid regurgitation for each devices.

Device	Name (NCT)	Design	N° patients	TR severity	Surgical risk	Primary outcome
TriClip	TRILUMINATE (NCT03904147)	Randomized, open-label	700	Severe or more	Intermediate or more	Hierarchical composite of all-cause mortality or tricuspid valve surgery, rate of heart failure hospitalizations, and quality of life improvement at 12 months
PASCAL	CLASP II TR (NCT04097145)	Randomized, open-label	825	Severe or more	Intermediate ore more	Hierarchical composite of adverse events including mortality, heart failure hospitalisation, need for tricuspid valve surgery, and improvement of quality of life at 24 months
MISTRAL	MATTERS II (NCT04073979)	First-in-man Prospective registry	10	Moderate or more	High risk	Acute safety with rate of device related serious adverse events at procedure, 5 and 30 days
Trialign	SCOUT II (NCT03225612)	Prospective registry	60	Moderate or more	High risk	All-cause mortality at 30 days
MIA	STTAR (NCT03692598)	Prospective registry with parallel arms (surgical and percutaneous)	60	Moderate or more	Excluded if unacceptable surgical risk	Safety: Major adverse events within 30 days of the procedure including death, cardiac tamponade, MI, cardiac surgery for failed MIA implantation, or stroke Efficacy: Reduction in tricuspid regurgitation at 30 days
Cardioband	TriBAND (NCT03779490)	Prospective post-market registry	150	Moderate or more	-	Reduction in severity of Tricuspid Regurgitation at discharge.
DaVingi	NCT03700918	First-in-human prospective registry	15	Severe or more	-	Safety: device-related serious adverse at 30 days Efficacy: Rate of successful adjustment of the DaVingi ring
TricValve	TRICUS STUDY (NCT03723239)	Prospective registry	10	n/a	. <u></u>	Safety: Percentage of participants with major adverse events at 30 days Efficacy: Change of (NYHA) functional class at 6 months
	TRISCEND (NCT04221490)	Early feasibility prospective registry	200	Moderate or more		Freedom from device or procedure-related adverse events at 30 days
Evoque	TRISCEND II (NCT04482062)	Randomized, open-label	775	Severe or more	-	 - TR grade reduction and composite of functional endpoint including: Kansas city cardiomyopathy questionnaire, NYHA functional class, and 6-minute walk test distance improvement at 6 months - Rate of Major adverse events at 30 days - Composite endpoint including all-cause mortality, right ventricle assistance device implantation or heart transplant, tricuspid valve intervention, heart failure hospitalizations, and functional improvement at 1 year
LuX-Valve	TRAVEL (NCT04436653)	Prospective registry	150	Severe or more	High risk	All-cause death at 1 year. Tricuspid regurgitation reduction at 1 year
Cardiovalve	NCT04100720	Early feasibility prospective registry	15	Moderate or more	-	Safety: Patients free of major adverse events at 30 days Efficacy: technical success and tricuspid regurgitation reduction at 30 days

NYHA: New York Heart Association, TR: tricuspid regurgitation.

Progress in Cardiovascular Diseases 69 (2021) 89–100