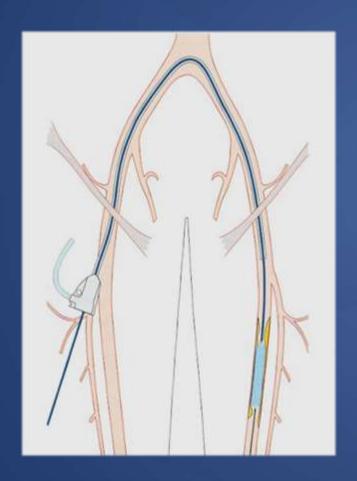

Femoropopliteal Intervention

Access for Treatment of SFA Antegrade Access



- Distal lesions, very calcified lesions
- Better steerability and pushability
- Shorter devices and wires

Access for Treatment of SFA Cross-over technique

- Easier punture
- Less complications
- Accessability of very proximal SFA lesions
- Compression bandage on the contralateral leg

Classification of femoropopliteal lesions TASC

Type A	 Single stenosis ≤ 10cm Single occlusion ≤5cm 	Endovascular
Type B	 Multiple lesions, Each ≤ 5cm Single stenosis or occlusions ≤ 15cm, Not involving the infrageniculate popliteal artery Single or multiple lesions in the Absence of continuous tibial vessels to improve inflow for a distal bypass Heavily calcified occlusion ≤ 5cm Single popliteal stenosis 	Endovascular

Classification of femoropopliteal lesions TASC

Multiple stenosis or occlusions totaling > 15cm with or without heavy calcification
 Recurrent stenosis or occlusions that need treatment after two endovascular interventions
 Chronic total occlusions of CFA

Type D

popliteal artery)
 Chronic total occlusion of popliteal artery and proximal trifurcation vessels

or SFA (> 20cm, involving the

Surgery

Treatment strategies

Balloon angioplasty (PTA)

Stainless steel stent

Nitinol stent

Graft stent

Drug-eluting balloon (Paclitaxel)

Drug-eluting stent (Everolimus, Sirolimus or Paclitaxel)

Bio-degradable stent

Cryoplasty / Laser angioplasty

Atherectomy

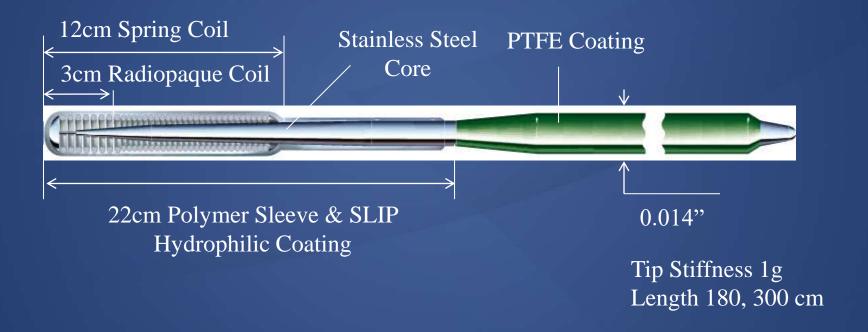
Factors Influencing the Patency of SFA Interventions

Positive	Negative	Noncontributory
< 2 cm lesions	Occlusions	Age
Non-calcified	Segments stented > 10 cm	Race
> 3.5 mm diameter vessel	> 30% residual stenosis	
Non-smokers	Poor tibial run-off	
Low CRP	Creatinine > 1.3	

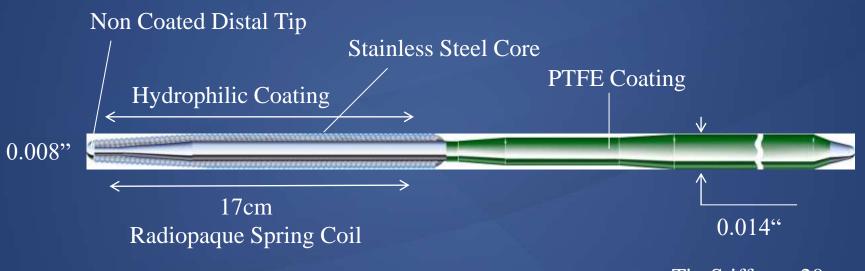
Guidewires for PTA

	Abbott	Asahi	Boston	Cook	Covidien
014	Command ES	Regalia XS <u>Astato XS</u>	Journey V-14 <u>Victory 014</u>	HydroST <u>Approach CTO</u>	Nitrex
018	Connect Flex Connect 250T	Treasure 12 Treasure Floppy Astato 30	<u>V-18</u> <u>Victory 018</u>		

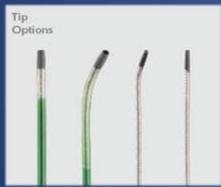
*Underline; CTO wires


Guidewire Command

Wire	Command	Command ES
Shape		
Tip stiffness(g)	2.8	3.5
Tip diameter	01	4'
Length(Cm)	190,	300
Feature	stainless steel	with nitinol tip


Guidewire Regalia

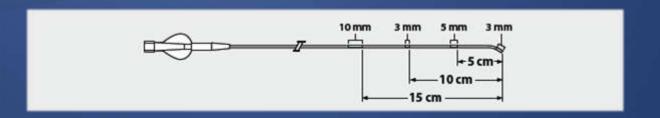
Guidewire Astato 20


Tip Stiffness 20g Length 180, 300 cm

Guidewire V-14, V-18

Wire	V-14	V-18		
Tip Stiffness (g)	3 (long Taper) 6 (short Taper)	7.6 (Short Taper) 6.7 (Long Taper)		
Tip Diameter (in)	014'	018'		
Length (Cm)	145, 195, 300	145, 195, 300		

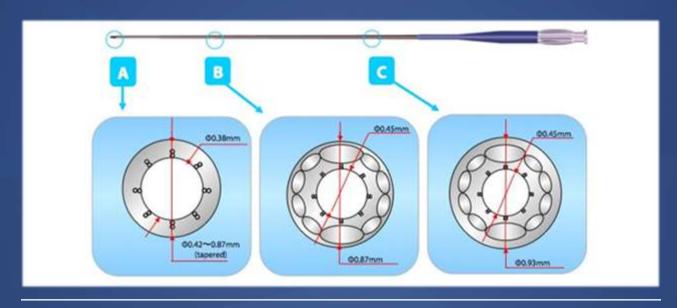
Support Catheter CXI


Pushability with braided stainless steel shaft

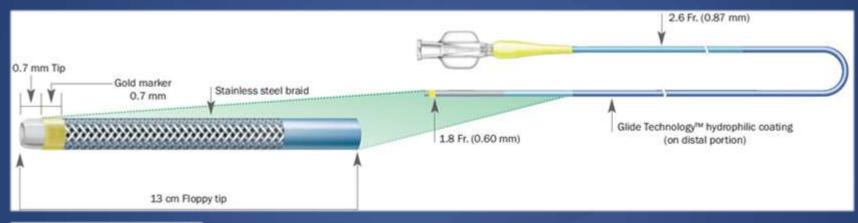
Hydrophilic coated distal part

Tapered tip(0.018") delivers great support to wire

Diameter / length: 2.6Fr / 90 and 150cm


Tip Configuration: straight or angled

Support Catheter Corsair


Pushability, Trackability, Support – SHINKA - Shaft

Lubricity - Hydrophilic Polymer Coating, PTFE Inner Layer

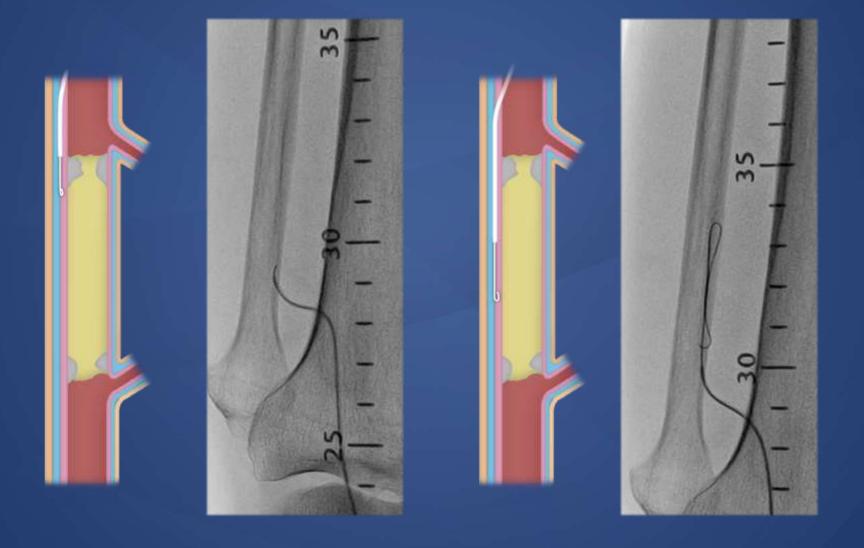
Maneuverability - Tapered Soft tip and Tungsten Braiding

Diameter / length: 2.6Fr / 135 and 150cm

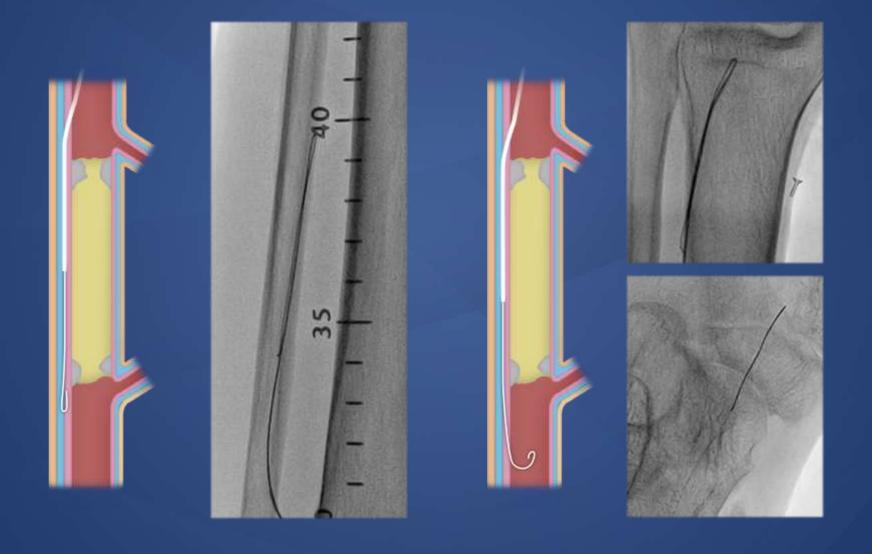
Support Catheter FineCross

Stainless steel braid structure

Hydrophilic coating, PTFE inner layer


Catheter length 130 cm / 150 cm

Diameter / length: 2.6Fr / 130 and 150cm



Subintimal Approach

Subintimal Approach

Re-entry Catheter

Re-entry catheter	Enter true lumen from subintimal space
Outback	Premounted needle on a 6 Fr catheter with fluoroscopic orientation
Pioneer	IVUS guided, premounted needle, orient needle to 12 o'clock, color flow in true lumen
Enteer	Flat balloon orients itself in subintimal space and points needle toward true lumen, 0.018 compatible
Offroad	Conical balloon 5.4 mm, when inflated points toward true lumen, microcatheter lancet

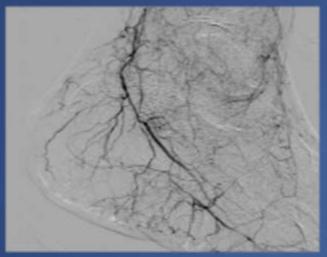
Schneider et al. J Vasc Surg 2013

Re-entry Catheter

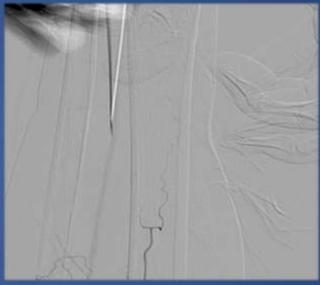
Pioneer

8F compatible 0.014" wire (2) IVUS-guided (Volcano)

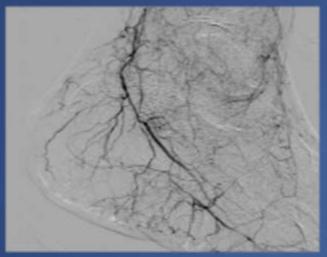
Outback

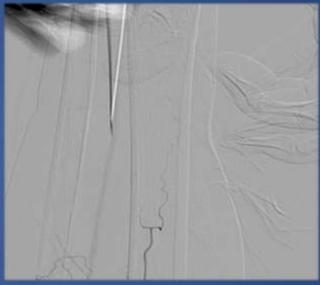

6F compatible 0.014" wire (1 or 2)

Fluoro-guided

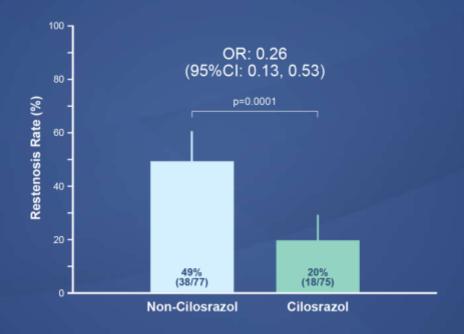


Retrograde Puncture Tibial Access





Retrograde Puncture Tibial Access


Stent Fracture

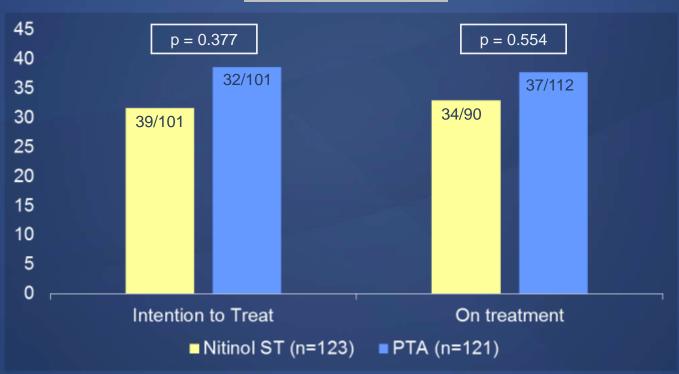
Type I	Type II	Type III	Type IV
Single stent fracture	Multiple single stent fracture, different site	Multiple single stent fracture, complete transverse linear fracture	Complete transverse linear Type III fracture with stent displacement

STOP-IC Aspirin vs. Aspirin + Cilostazol

After Endovascular Therapy; Randomized Study 12 Months Results of 77 without Cilostazol vs. 75 with Cilostazol

Conclusion Cilostazol reduced angiographic restenosis after percutaneous transluminal angioplasty with provisional nitinol stenting for femoropopliteal lesions.

Iida O et al. Circulation. 2013



FAST Nitonol Stent vs. PTA

SFA Lesions up to 10 cm

Lesion length 45mm ST vs. 44mm PTA

Krankenberg H et al. Circulation. 2007

Routine vs. Provisional Stenting

Meta-Analysis of Randomized Trials
Lesion length 45.8mm ST vs. 43.3mm Provisional + PTA

Immediate technical failure

Study name	Stent type	Time point	Statis	tics for	each stu	dy	Failure	/ total	Risk ratio and 95% CI	
			Risk ratio	Lower limit	Upper limit	P-value	Stent	Angiop	lasty	Relative weight
Vroegindeweij	Palmaz	1997	0.16	0.01	2.95	0.218	0/24	3/27	 -	4.2
IntraCoil	Nitinol	2001	0.77	0.48	1.25	0.291	25/177	32/175		24.1
Cejna	Palmaz	2001	0.08	0.01	0.63	0.016	1/77	12/77		7.5
Becquemin	Palmaz	2003	0.23	0.08	0.66	0.006	4/115	17/112	_ 	15.9
Saxon	Stent graft	2003	0.29	0.01	6.60	0.439	0/15	1/13		3.7
Vlabahn	Stent graft	2005	0.39	0.16	0.95	0.038	6/97	16/100		18.1
Schilinger	Nitinol	2006	0.06	0.01	0.44	0.006	1/51	17/53		7.7
Krankenberg	Nitinol	2007	0.24	0.10	0.56	0.001	6/123	25/121		18.7
Summary risk	ratio		0.28	0.15	0.54	0.000				
									0.1 0.2 0.5 1 2 5	10
									Favours stents Favours angiople	

Conclusion Despite the higher immediate success, routine stenting was not associated with a significant reduction in the rate of restenosis or TVR.

Kasapis C et al. Eur Heart J. 2009

Routine vs. Provisional Stenting

Meta-Analysis of Randomized Trials
Lesion length 45.8mm ST vs. 43.3mm Provisional + PTA

Restenosis

Study name	Stent type	Time point	Statis Risk ratio	tics for e Lower limit	each stu Upper limit		Failure Stent	/ total Angiop	lasty	Risk ratio and	95% CI	Relative weight
Vroegindeweij	Palmaz	1997	1.45	0.64	3.29	0.378	9/24	7/27		ı ı——		5.1
Zdanowski	Strecker	1999	0.86	0.63	1.16	0.321	10/12	8/8				14.3
IntraCoil	Nitinol	2001	1.22	0.84	1.78	0.288	40/97	31/92				12.6
Cejna	Palmaz	2001	0.98	0.66	1.46	0.929	26/56	26/55				12.0
Grimm	Palmaz	2001	1.23	0.46	3.26	0.682	8/30	5/23		-		3.9
Becquemin	Palmaz	2003	1.07	0.67	1.72	0.769	26/75	21/65				10.3
Saxon	Stent graft	2003	0.17	0.05	0.65	0.009	2/15	10/13	- I I			2.3
Vlabahn	Stent graft	2005	0.58	0.43	0.80	0.001	34/97	60/100		——————————————————————————————————————		14.1
Schilinger	Nitinol	2006	0.66	0.46	0.95	0.025	21/46	36/52		+		12.8
Krankenberg	Nitinol	2007	0.82	0.56	1.20	0.304	32/101	39/101		— - -		12.5
Summary risk	ratio		0.85	0.69	1.06	0.146						
									0.1 0.	.2 0.5 1	2 5	10
									Favo	ours stents F	avours ang	jioplasty

Conclusion Despite the higher immediate success, routine stenting was not associated with a significant reduction in the rate of restenosis or TVR.

Kasapis C et al. Eur Heart J. 2009

Routine vs. Provisional Stenting

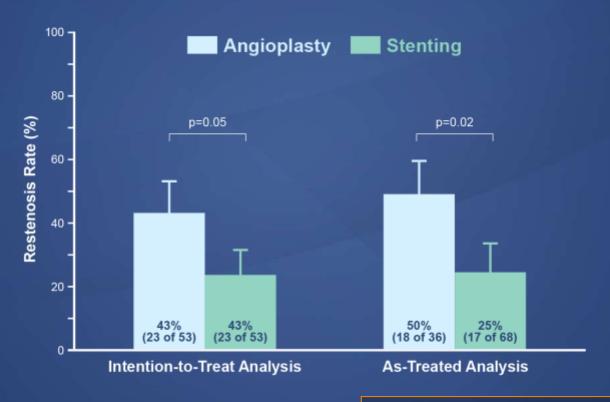
Meta-Analysis of Randomized TrialsLesion length 45.8mm ST vs. 43.3mm Provisional + PTA

Target vessel revascularization

Study name	Stent type	Time point	Statis Risk ratio	tics for e Lower limit	each stu Upper limit	dy P-value	Failure Stent	/ total Angioplasty	Risk ratio and 95% CI	Relative weight
Zdanowski	Strecker	1999	1.13	0.18	7.09	0.894	2/15	2/17	+	1.5
IntraCoil	Nitinol	2001	0.93	0.56	1.54	0.771	24/146	25/141		17.2
Cejna	Palmaz	2001	1.75	1.03	2.96	0.037	28/77	16/77		16.2
Grimm	Palmaz	2001	0.88	0.37	2.06	0.762	8/30	7/23		6.6
Becquemin	Palmaz	2003	1.51	0.68	3.36	0.306	14/115	9/112		7.6
Saxon	Stent graft	2003	0.87	0.14	5.32	0.877	2/15	2/13		1.5
Vlabahn	Stent graft	2005	0.93	0.54	1.62	0.805	19/97	21/100		14.8
Schilinger	Nitinol	2006	0.69	0.44	1.08	0.104	17/46	28/52		21.0
Krankenberg	Nitinol	2007	0.82	0.46	1.47	0.497	17/114	21/115		13.5
Summary risk	ratio		0.98	0.78	1.23	0.889				
								0.1	0.2 0.5 1 2 5 1	0
									Favours stents Favours angiopla	asty

Conclusion Despite the higher immediate success, routine stenting was not associated with a significant reduction in the rate of restenosis or TVR.

Kasapis C et al. Eur Heart J. 2009

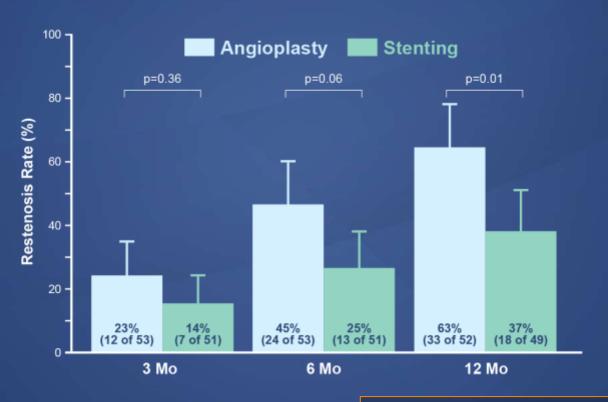


Nitinol Stent vs. PTA Randomized

Intermittent Claudication and Chronic CLI of SFA

Lesion length 132mm ST vs. 127mm PTA

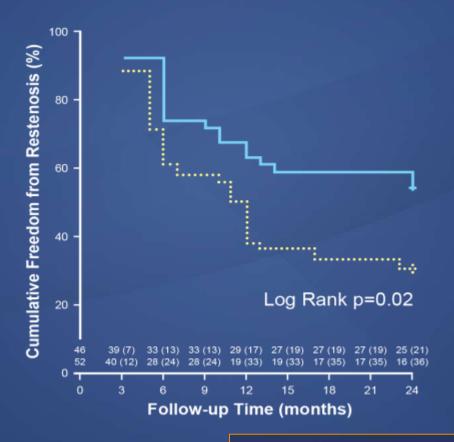
Schillinger M et al. NEJM. 2006



Nitinol Stent vs. PTA Randomized

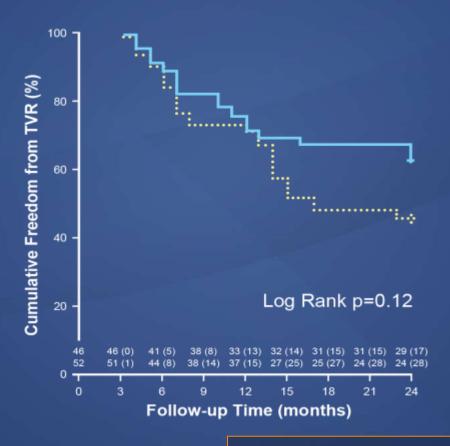
Intermittent Claudication and Chronic CLI of SFA

Lesion length 132mm ST vs. 127mm PTA


Schillinger M et al. NEJM. 2006

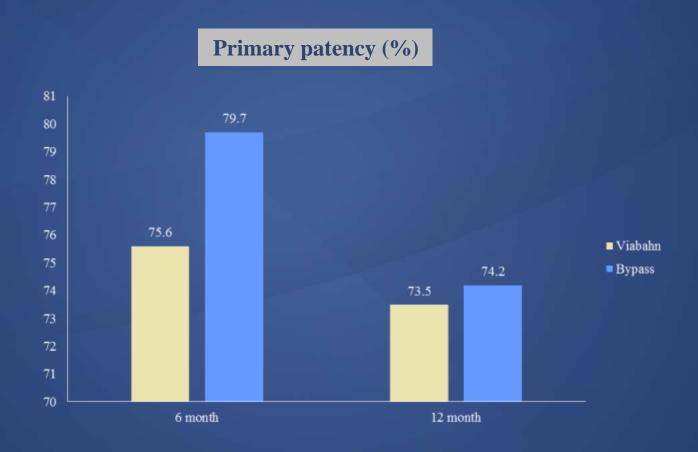
Primary ST vs. PTA with Optional ST Sustained Benefit at 2 Years

Lesion length 112mm ST vs. 93mm PTA

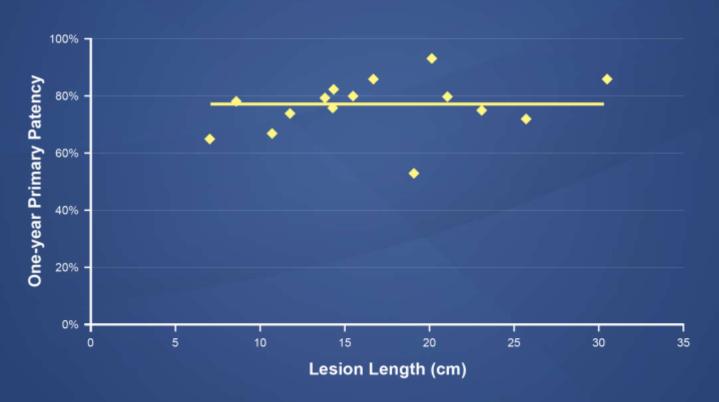

Schillinger M et al. Circulation. 2007

Primary ST vs. PTA with Optional ST Sustained Benefit at 2 Years

Lesion length 112mm ST vs. 93mm PTA


Schillinger M et al. Circulation. 2007

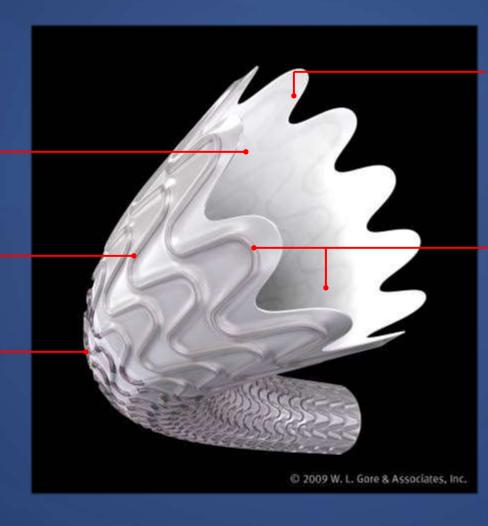
Viabahn Graft Stent


Stented length: 25.6±15 cm


Jet K et al. J Vasc Surg. 2007

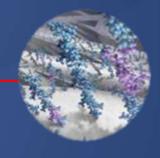
Viabahn 1-year Primary Patency Based on Lesion Length 988 Limbs in 15 Independent Studies

Patient demographics, lesion characterization, and patency definitions may differ among studies. Studies include at least 30 limbs.



Endoprosthesis Description

Ultra-thin wall ePTFE tube


Unique, durable bonding film

Polished nitinol support

Contoured proximal edge

Propaten Bioactive Surface

Lengths: 2.5, 5, 10, 15 cm

Diameters: 5 - 13 mm

Zilver® PTX® Drug Eluting Stent

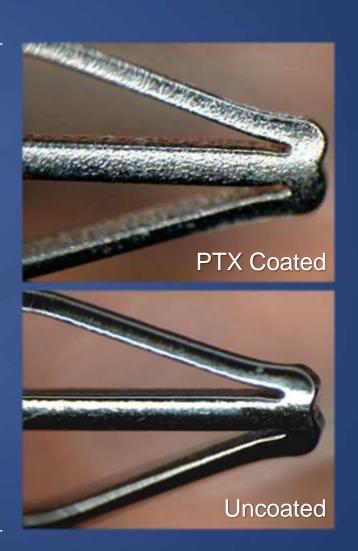
Designed for the SFA

CE Marked

Investigational in the US and Japan

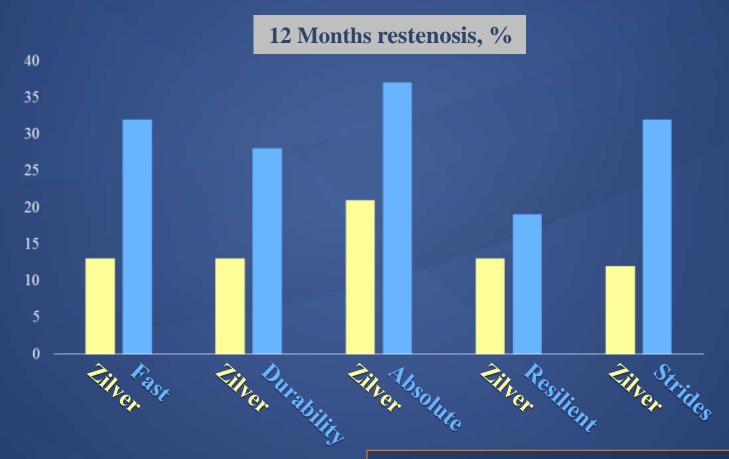
Dual therapy stent

Mechanical support:


Zilver® Flex™ Stent Plaftorm

coating: Paclitaxel only

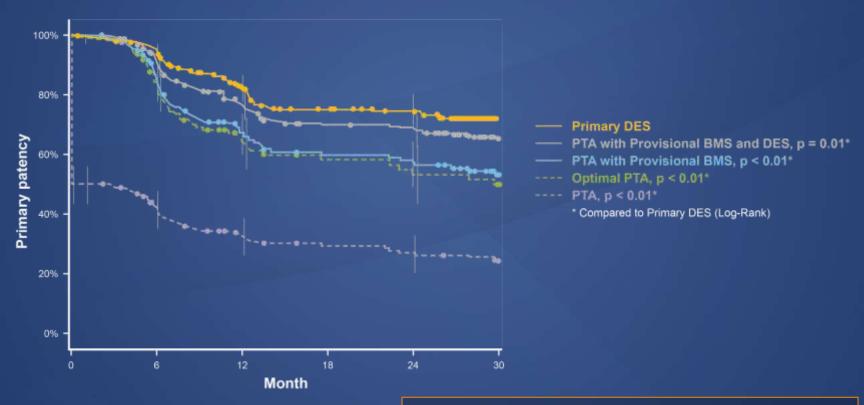
No polymer or binder


3 μg/mm² dose density

Sponsor: Cook Medical

Zilver PTX for de novo Lesion Matching comparison with other stent trials

Dake MD et al. J Endovasc Ther. 2011



Zilver PTX vs. PTA/Provisional BMS

Randomized and Single-Arm Clinical Studies

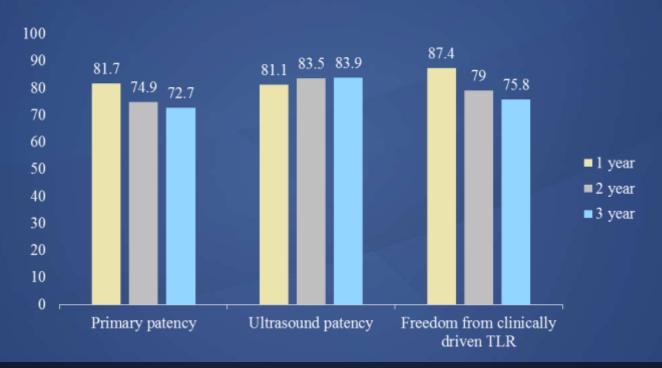
2 Year Follow-Up of 236 Primary DES vs. 238 Primary PTA and 59 Provisional BMS vs. Provisional DES



Dake MD et al. J Am Coll Cardiol. 2013

Biodegradable Igaki-Tamai Stent First-generation PLLA fully Bioresorbable Stent SFA de novo Lesions of 30 Patients

Conclusion The first fully bioresorbable stent shows angiographic results similar to those of metal stents in occlusive lesions of the SFA.


Werner M et al. JACC Cardiovasc Interv. 2014

SMART Nitinol Self-expanding StentObstructive SFA Disease

3 year outcomes for 250 stented patients

Conclusion Patients treated with a Nitinol stent show sustained clinical and quality of life improvements at 3 years, with a low, 3.6% rate of stent fracture.

Jaff MR. International Symposium on Endovascular Therapy 2014

Paclitaxel-Coated vs. Uncoated Balloon Meta-Analysis of Randomized Trials

Target lesion revascularization

Study or Subgroup	PCB Events	Total	UCB Events	Total	Weight	Odds Ratio M-H, Random, 95% CI	Year		Odds Ratio M-H, Randon	n, 95% CI	
THUNDER	7	48	28	54	32.1%	0.16 [0.06, 0.42]	2008				
FemPac	6	45	21	42	27.3%	0.15 [0.05, 0.44]	2008				
LEVANT I	6	47	10	45	24.7%	0.51 [0.17, 1.55]	2010				
PACIFIER	3	40	9	39	16.0%	0.27 [0.07, 1.09]	2011				
Total (95% CI)		180		180	100.0%	0.23 [0.13, 0.40]			•		
Total events	22		68								
Heterogeneity: Tau ² =	= 0.02; Chi ²	= 3.19	. df = 3 (F	= 0.36	s); I ² = 6%					+	
Test for overall effect								0.01	0.1 1	10	100
Heterogeneity(exact):				5)					PCB Better	UCB Better	
T1 f -ff											

Conclusion In femoropopliteal arterial disease, PCB therapy is associated with superior antirestenotic efficacy as compared with UCB angioplasty with no evidence of a differential safety profile

Salvatore C et al. Circ Cardiovasc Interv. 2012

Paclitaxel-Coated vs. Uncoated Balloon Meta-Analysis of Randomized Trials

Binary restenosis

Study or Subgroup	PCB Events	Total	UCB Events	Total	Weight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
THUNDER	7	41	21	48	38.8%	0.26 [0.10, 0.71]	
FemPac	10	31	22	34	36.1%	0.26 [0.09, 0.73]	
PACIFIER	4	40	12	39	25.1%	0.25 [0.07, 0.86]	
Total (95% CI)		112		121	100.0%	0.26 [0.14, 0.48]	◆
Total events	21		55				
Heterogeneity: Tau ² =	0.00; Chi ²	2 = 0.01	df = 2 (F	= 1.00)); I ² = 0%		
Test for overall effect:	Z = 4.27 ((P < 0.0)	001)				0.01 0.1 1 10 100
Heterogeneity(exact): C	hi ² = 0.00	4, df = 1	2 (P = 0.9	99)			PCB Better UCB Better
Tost for overall effect	ovacti. D	0.000	1				

Conclusion In femoropopliteal arterial disease, PCB therapy is associated with superior antirestenotic efficacy as compared with UCB angioplasty with no evidence of a differential safety profile

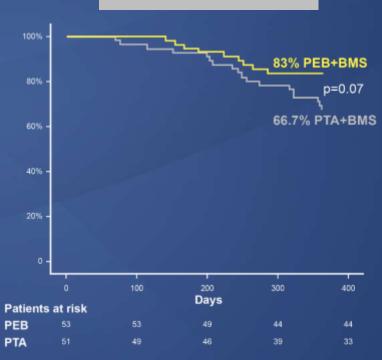
Salvatore C et al. Circ Cardiovasc Interv. 2012

Paclitaxel-Coated vs. Uncoated Balloon Meta-Analysis of Randomized Trials

Late lumen loss **UCB** Mean Difference Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV. Random, 95% CI -1.30 [-1.93, -0.67] THUNDER 1.8 48 19.6% 1.1 31 1.1 34 25.2% -0.50 [-1.04, 0.04] FemPac 1 35 29.7% -0.69 [-1.17, -0.21] LEVANT I 1.1 39 0.61 1.3 39 25.5% -0.66 [-1.19, -0.13] **PACIFIER** -0.05 1.1 40 Total (95% CI) 151 100.0% 0.75 [-1.06, -0.45] Total events Heterogeneity: $Tau^2 = 0.02$; $Chi^2 = 3.95$, df = 3 (P = 0.27); $I^2 = 24\%$ PCB Better UCB Better Test for overall effect: Z = 4.78 (P < 0.00001)

Conclusion In femoropopliteal arterial disease, PCB therapy is associated with superior antirestenotic efficacy as compared with UCB angioplasty with no evidence of a differential safety profile

Salvatore C et al. Circ Cardiovasc Interv. 2012

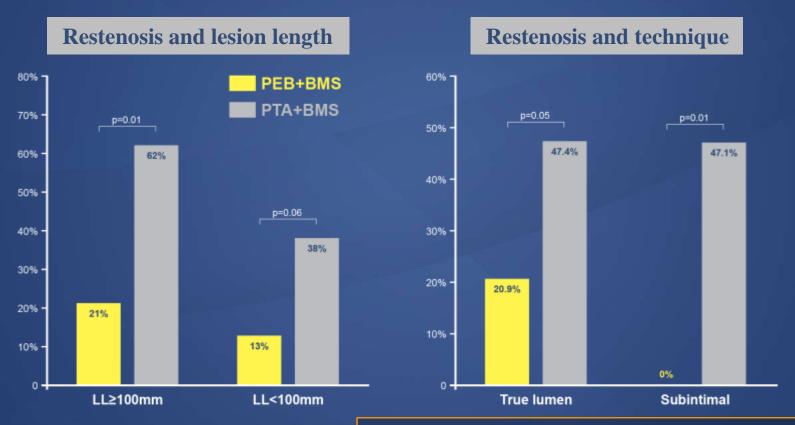

DEBATE-SFA Randomized Trial

PEB+BMS vs. PTA+BMS with intermittent claudication or CLI 12-Month Results from 55 Lesion vs. 55 Lesion

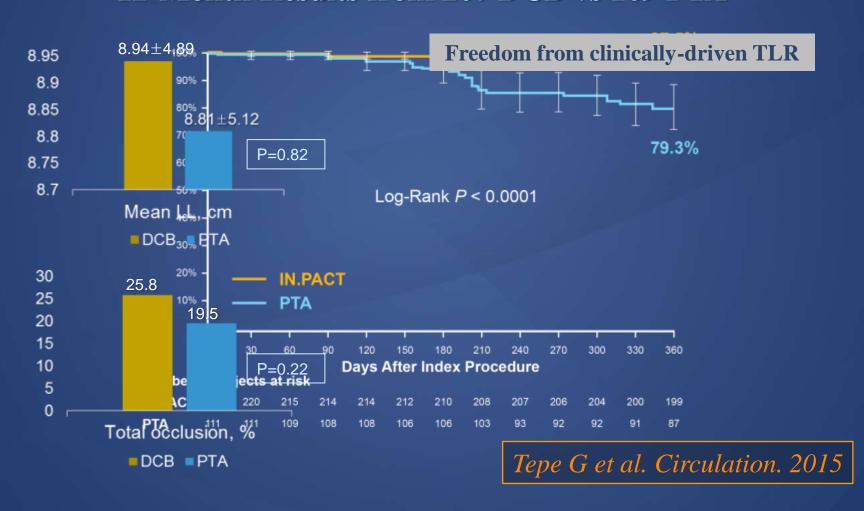
12-month target lesion evaluation

	PEB+BMS	PTA+BMS	P Value
Restenosis	9 (17.0)	26 (47.3)	0.008
RVD, mm	5.11±0.6	5.05 ± 0.5	0.5
MLD, mm	3.59±1.42	2.12±1.47	< 0.001
DS, %	20.7	41.2	< 0.001
Late lumen loss, mm	0.86	1.68	<0.001

Freedom from TLR


Liistro F et al. J Am Coll Cardiol Intv. 2013

DEBATE-SFA Randomized Trial


PEB+BMS vs. PTA+BMS with intermittent claudication or CLI 12-Month Results from 55 Lesion vs. 55 Lesion

Liistro F et al. J Am Coll Cardiol Intv. 2013

IN.PACT SFA Randomized Trial

DCB vs. Standard PTA of symptomatic femoropopliteal disease 12-Month Results from 207 DCB vs 109 PTA

IN.PACT SFA Randomized Trial

DCB vs. Standard PTA of symptomatic femoropopliteal disease 12-Month Results from 207 DCB vs 109 PTA

Outcome	DCB (n=220)	PTA (n=111)	P Value
Primary efficacy – primary patency, % (m/n)	82.2 (157/191)	52.4 (54/103)	<0.001
12-month efficacy outcomes			
All TLR, % (m/n)	2.9 (6/207)	20.6 (22/107)	< 0.001
Clinically driven TLR, % (m/n)	2.4 (5/207)	20.6 (22/107)	< 0.001
Clinically driven TVR, % (m/n)	4.3 (9/207)	23.4 (25/107)	< 0.001
Primary sustained clinical improvement, % (m/n)	85.2 (167/196)	68.9 (73/106)	< 0.001
ABI/TBI	0.951±0.221#	0.886±0.169	0.002

Tepe G et al. Circulation. 2015

IN.PACT SFA Randomized Trial

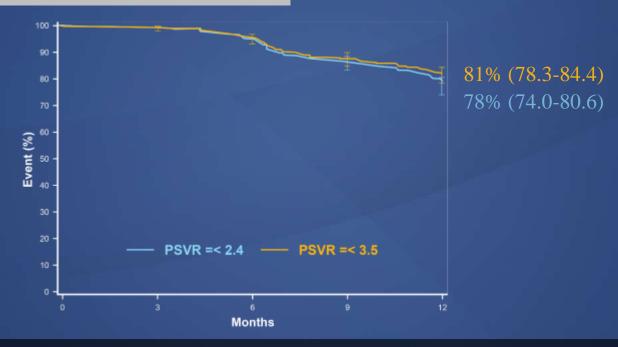
DCB vs. Standard PTA of symptomatic femoropopliteal disease 12-Month Results from 207 DCB vs 109 PTA

Outcome	DCB (n=220)	PTA (n=111)	P Value
12-month safety outcomes			
30-day device- and procedure-related death, % (m/n)	0.0 (0/218)	0.0 (0/111)	>0.999
Target limb major amputation, % (m/n)	0.0 (0/207)	0.0 (0/107)	>0.999
All-cause death, % (m/n)	1.9 (4/207)	0.0 (0/107)	0.93
Thrombosis, % (m/n)	1.4 (3/207)	3.7 (4/107)	0.10
12-month functional outcomes			
Change from baseline by EQ-5D Index	0.1059±0.2089#	0.0730±0.1951	0.095
Walking impairment, %	72.7±31.4#	73.6±29.5	0.590
Change in 6MWT from baseline to 12 mo, m	38.7±92.1#	59.1±102.3	0.878

Tepe G et al. Circulation. 2015

SMART® Flex Nitinol Self Expanding Stent

SilverHawk Directional Atherectomy

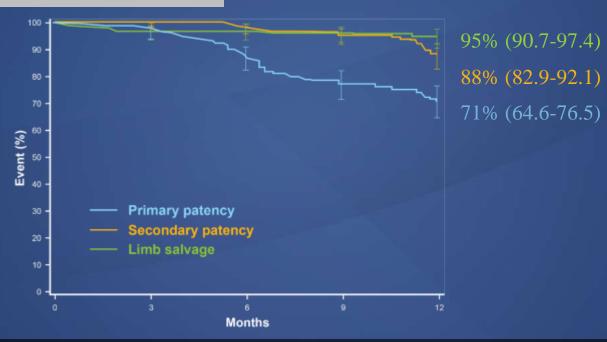


DEFINITIVE LE

Provides insight into the clinical utility of directional atherectomy with the TurboHawk and SilverHawk device in a broad range of patients. (diabetic, non-diabetic, claudicants, and those with CLI)

DEFINITIVE LE Revascularization Using Directional Atherectomy 12 Month Prospective Results

Patency outcomes: Claudicant cohort


Conclusion The DEFINITIVE LE study demonstrated that DA is a safe and effective treatment modality at 12 months for a diverse patient population with either claudication or CLI.

McKinsey et al. J Am Coll Cardiol Intv. 2014

DEFINITIVE LE Revascularization Using Directional Atherectomy 12 Month Prospective Results

Endpoint outcomes: CLI cohort

Conclusion The DEFINITIVE LE study demonstrated that DA is a safe and effective treatment modality at 12 months for a diverse patient population with either claudication or CLI.

McKinsey et al. J Am Coll Cardiol Intv. 2014

DEFINITIVE LE

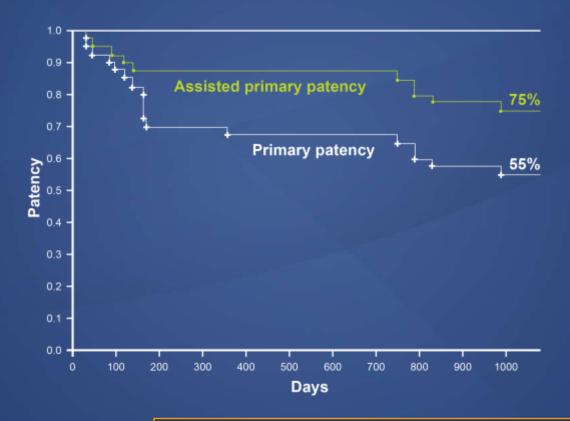
Revascularization Using Directional Atherectomy 12 Month Prospective Results

Patency outcomes: Diabetic vs. Nondiabetic claudicants

	Months	0	3	6	9	12
Dishatia	At risk	345	331	309	261	150
Diabetic	Patency (95% CI)	100 (100.0 100.0)	99 (96.5 99.4)	95 (92.2 97.0)	85 (80.6 88.5)	77 (71.7 81.4)
Non-	At risk	398	376	346	309	167
Diabetic	Patency (95% CI)	100 (100.0 100.0)	99 (98.1 100.0)	95 (92.1 96.7)	88 (83.6 90.5)	78 (72.9 82.1)

Conclusion DA was shown to be noninferior for treating PAD in patients with diabetes compared with those without diabetes.

McKinsey et al. J Am Coll Cardiol Intv. 2014



SFA Patency Comparison

Study	Device	Mean Length, cm	Patency, %	Patency Definition
DEFINITIVE LE	DA	8.1	75	$PSVR \le 2.4$
RESILIENT	BMS	6.2	81.3	PSVR <2.5
DURABILITY II	BMS	8.9	77.2	PSVR <2.0
STRIDES	DES	9.0	68	PSVR <2.5
Zilver RCT	DES	5.4	83.1	PSVR <2.0
Italian Registry	DCB	7.6	83.7	PSVR <2.5
LEVANT I	DCB	8.1	67	PSVR <2.5

Directional Atherectomy

Calcified Stenotic Lesion of SFA, TASC B and C 3-Year Results of 59 Lesion, Mean Lesion Length 7.9cm

Minko P et al. Cardiovasc Intervent Radiolol. 2014

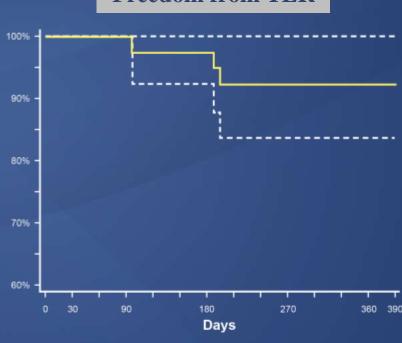
ISR Classification

Classification and Clinical Impact Freedom From Recurrent ISR

Classification and Clinical Impact Freedom From Recurrent Occlusion

Predictors of Recurrent ISR After POBA for ISR

	Univariate And	alysis	Multivariate An	alysis
Variables	HR (95% CI)	P value	HR (95% CI)	P value
ISR class III	2.90 (1.83-4.56)	<0.01	2.44 (1.33-4.48)	<0.01
Lesion Length (mm)	1.004 (1.002-1.007)	< 0.01	1.001 (0.998-1.005)	0.50
Reference vessel diameter (mm)	0.62 (0.44-0.87)	< 0.01	0.63 (0.44-0.89)	<0.01
Early restenosis	1.92 (1.13-3.23)	0.02	1.60 (0.94-2.73)	0.09


DEB for treatment of SFA ISR

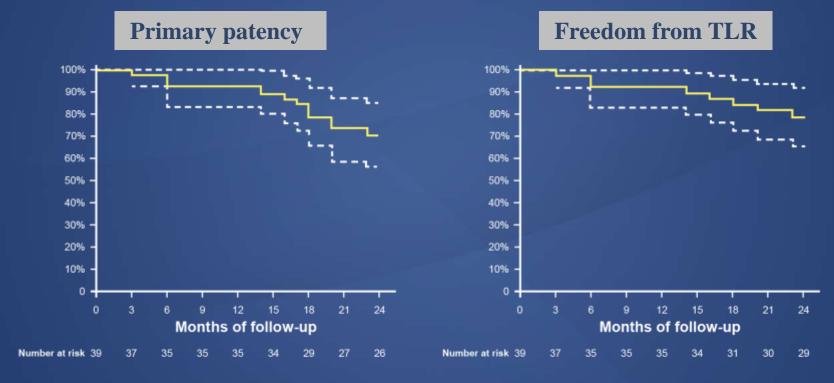
Final post-dilation with paclitaxel-eluting balloons
12-Month Results of 39 Consecutive Patients

Procedural characteristics

Stent diameter, mm	6 (6-6.5)
Stent length, mm	150 (95-262.5)
Lesion length, mm	82.9 ± 78.9
DEB diameter, mm	6 (5-6)
Number of DEB	2 (1-2)
Procedural success	39 (100)

Freedom from TLR

Dotted lines = 95% confidence interval

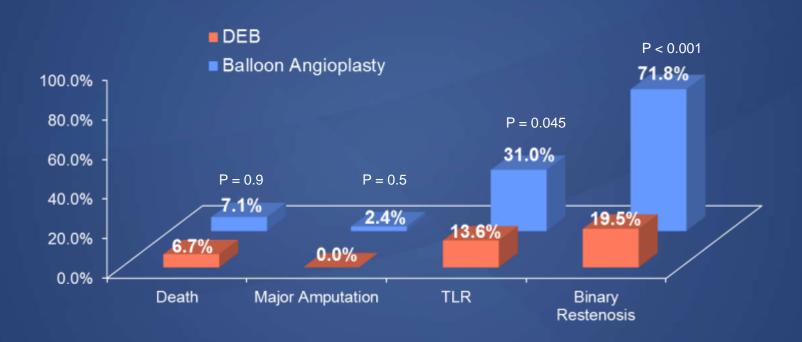

Stabile E. et al. J Am Coll Cardiol 2012

DEB for treatment of SFA ISR

Final post-dilation with paclitaxel-eluting balloons 2-Year Follow Up of 39 Consecutive Patients

Dotted lines = 95% confidence interval

Virga V et al. JACC Cardiovasc Interv. 2014



DEBATE-ISR

DEB vs. Standard Angioplasty to Reduce Recurrent Restenosis in Diabetics with Femoropopliteal ISR

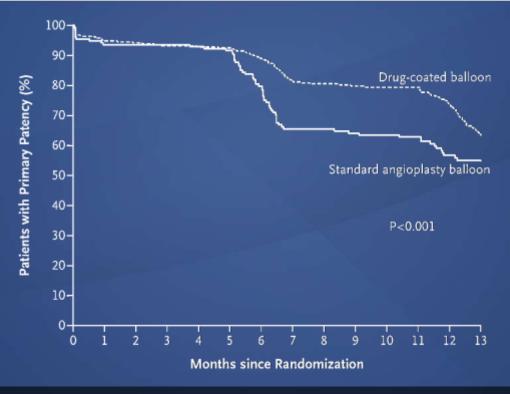
44 patients with claudication or CLI treated with paclitaxel eluting balloon

Conclusion Use of DEBs to treat diabetic patients with femoropopliteal ISR appears to reduce recurrent restenosis and repeat angioplasty at 1 year.

Liistro F et al. J Endovasc Ther. 2014

Treatment of ISR in SFA

PTA	Up to 73% restenosis rates at 6-month 49.9% to 84.8% at 12-month	J.Laird et al. JACC 2012 P.Dick et al. Radiology 2008
Cutting Balloon	65% restenosis rates at 6-month	A. Tosaka et al. JACC 2012
Atherectomy	46% restenosis rates at 12-month	T.Zeller et al. JACC 2006
Graft stents	62%~85.1% primary patency at 12- month	TS. Monahan et al. Journal of Vasc Surg 2011 P.Soukas Oral presentation LINC 2011
ELCA/PTA+HFH-Graft stents	48% primary patency at 12-month	J.Laird et al. Cath and Cardiovasc Interv 2012
PTA + Brachytherapy	79.8% primary patency at 12-month	M.Werner et al. JEVT 2012
DES	81% freedom from TLR at 12-month 61% freedom from TLR at 24-month	Thomas Zeller JACC Cardiovasc Interv 2013
DEB	92% freedom from TLR at 12-month	Stabile JACC 2013


New Trial of Treatment in SFA

LEVANT 2 trial

Paclitaxel-Coated Balloon for Femoropopliteal Artery Disease 12 Month Randomized Results

Patency outcomes: Drug-coated balloon vs. Conventional angioplasty

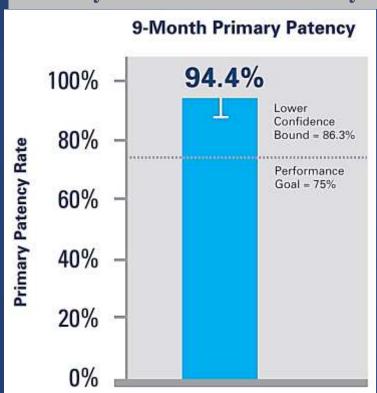

Conclusion DCB was higher than the rate with angioplasty with a standard balloon in a rate of primary patency at 12 months.

SUPERB trial

Wire-Interwoven Nitinol Stent for Femoropopliteal Artery 12 Month Randomized Results

Composite outcome of death, TLR, limb salvage

Interval	[0, 90]	(90, 180)	[180, 270)	[270, 360]	[360, 390]
# At Risk	264	242	234	215	188
# Censored	21			24	
# Events		4	14		
% Survived	1.000	0.996	0.979	0.920	0.863
Standard Error		0.004	0.009	0.018	0.023

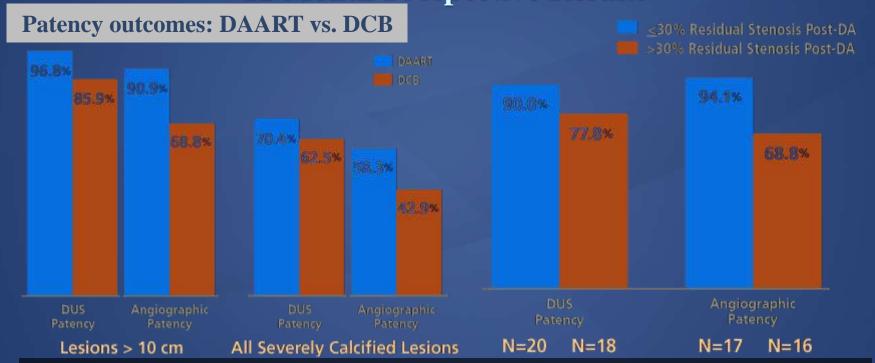


Conclusion Primary endpoint was achieved in 99.2% of patients(P<0.001). Primary patency at 12 months was achieved in 78.9% of population (P<0.001).

MAJESTIC trial

Paclitaxel-Eluting Self-Expanding Stent for Femoropopliteal Artery 9 Months Primary patency

Patency outcomes: Phase 2 study

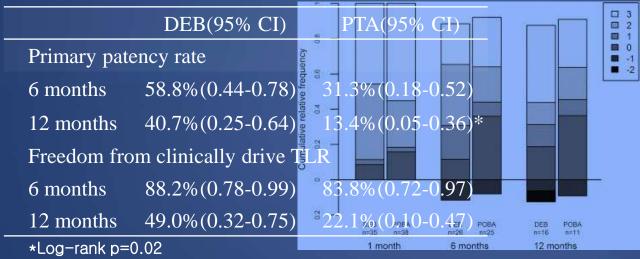


Conclusion Primary patency was achieved in 94.4% of patients. TLR rate at 9 months was achieved in 3.6% of population.

DEFINITIVE AR trial

Revascularization Using Directional Atherectomy combine with Drug Coated Balloon angioplasty

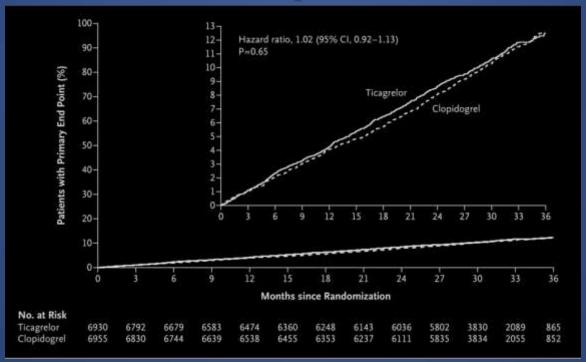
12 Month Prospective Results



Conclusion The DEFINITIVE AR study demonstrated that DA is a safe and effective treatment modality at 12 months for a diverse patient population with either claudication or CLI.

PACUBA trial

Paclitaxel-eluting balloon versus standard balloon angioplasty in ISR of the SFA and proximal popliteal artery 12 Month Prospective Results



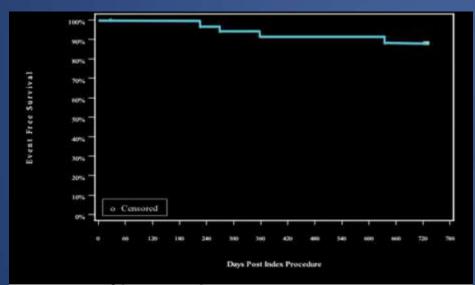
Conclusion When treating peripheral arterial disease in patients with ISR in the femoropopliteal artery, paclitaxel-eluting balloon angioplasty provides significantly higher patency rates than standard PTA.

EUCLID trial

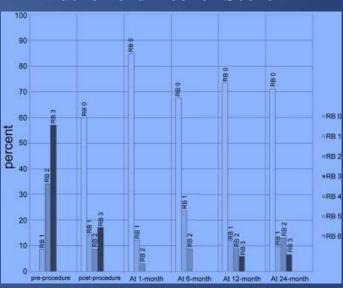
Ticagrelor versus Clopidogrel in symptomatic peripheral arterial disease

30 Month Prospective Results

Conclusion Ticagrelor was not shown to be superior to clopidogrel for the reduction of cardiovascular events.



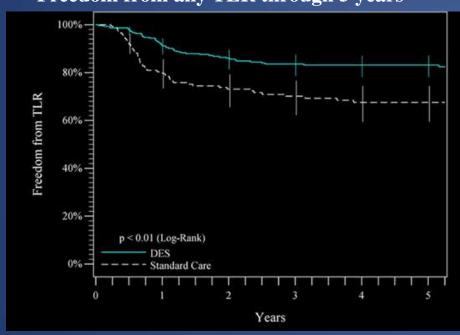
ESPRIT 1 trial


Bioresorbable Everolimus-Eluting Vascular Scaffold for peripheral artery disease

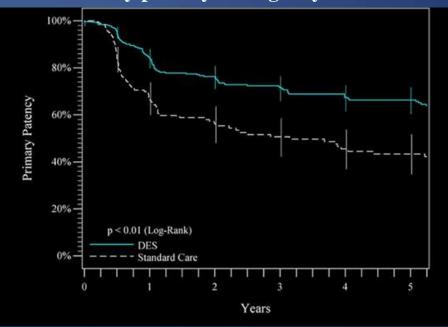
2-year Prospective Results

Freedom from any TLR through 24 months

Rutherford-Becker Score

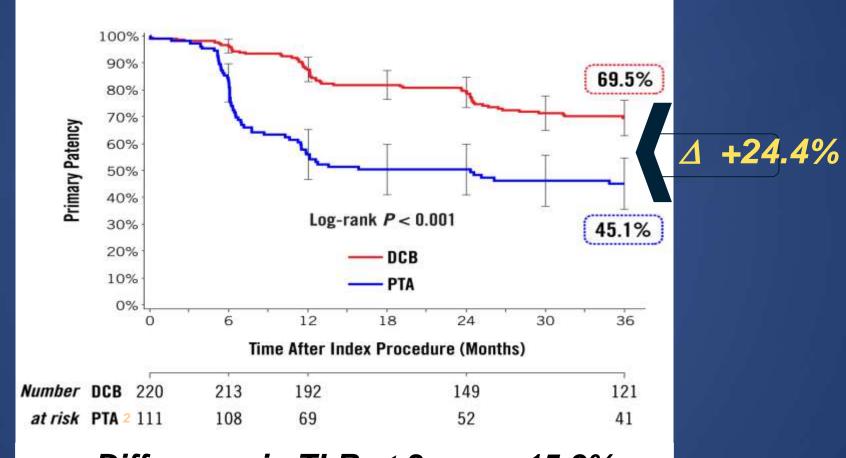


Conclusion The 1-year and 2-year freedom from TLR seems comparable to results of DEB and DES for peripheral arteries


Zilver PTX randomized trial

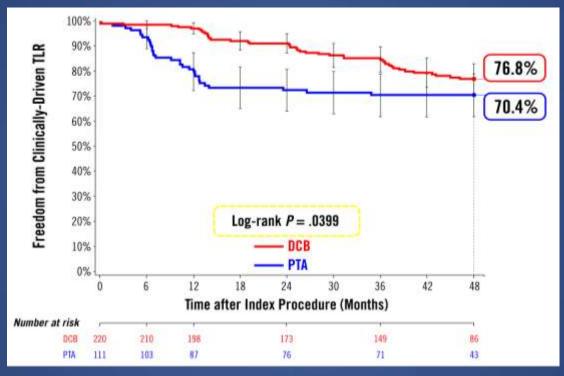
5-year Prospective Results

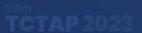
Freedom from any TLR through 5 years



Primary patency through 5 years

Conclusion The Zilver PTX DES provided sustained safety and clinical durability in comparison with standard endovascular treatments.

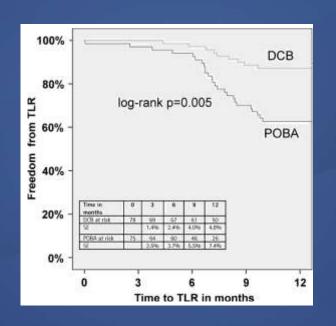

IN.PACT SFA Trial Primary Patency Through 3 Years


Difference in TLR at 3 years 15.9%

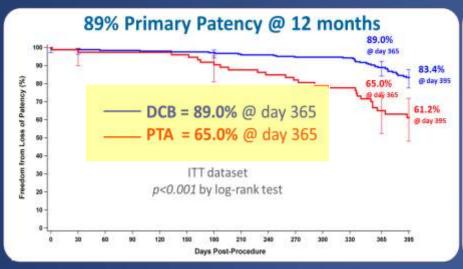
IN.PACT SFA Trial Freedom From CD-TLR Through 4 Years

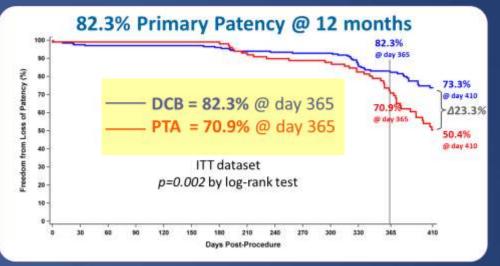
	IN.PACT DCB (N=220)	PTA (N=111)	P-value†
Time to CD-TLR	739.2 ± 384.0	302.9 ± 213.0	< 0.001

IN.PACT SFA Trial Safety Outcomes Through 4 Years

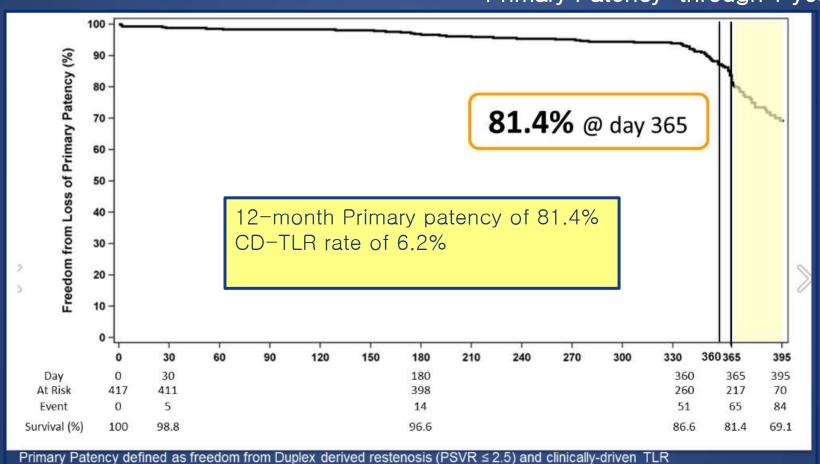

	IN.PACT DCB (N=220)	PTA (N=111)	P-value [†]
Primary safety composite [1]	73.4% (135/184)	64.1% (66/103)	0.108
Major adverse events [2]	38.0% (70/184)	40.8% (42/103)	0.705
All-cause death	13.0% (24/184)	6.8% (7/103)	0.116
Device-related death	0.0% (0/219)	0.0% (0/111)	>0.999
Target limb major amputation	0.0% (0/184)	0.0% (0/103)	>0.999
Thrombosis	2.2% (4/184)	4.9% (5/103)	0.290

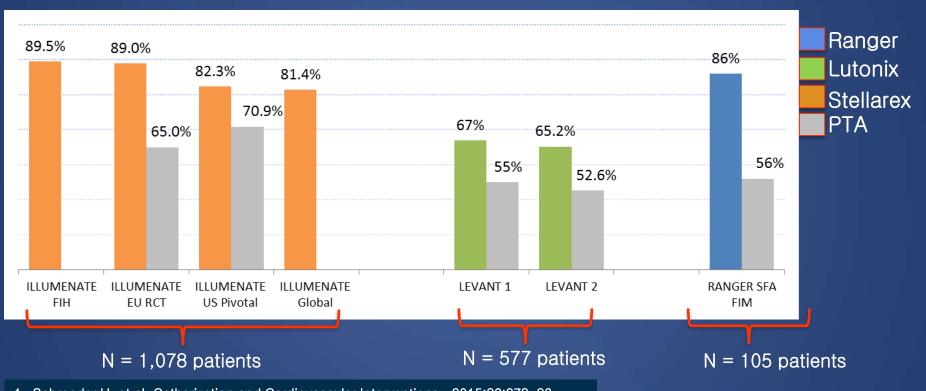
^{1.} Freedom from 30-day device and procedure-related death and target limb major amputation and clinically-driven TVR within 36 months


^{2.} Composite of death, clinically-driven TVR, target limb major amputation, and thrombosis


[†] P-values are based on Fisher's exact test for superiority with significance level of 0.05

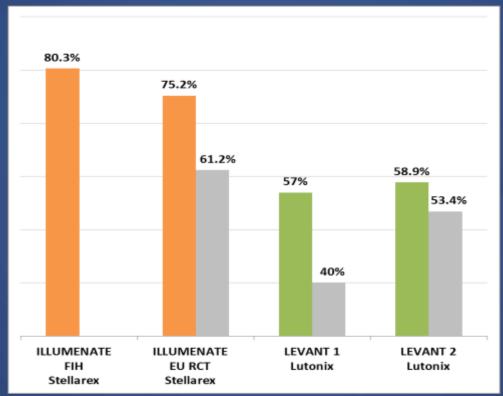
CONSEQUENT Trial Freedom from CD-TLR


ILLUMENATE: 2 RCTs Good Patency at 12 Months EU RCT¹ US Pivotal²



- [‡] Core-lab adjudicated (VascCore Core laboratory Boston, MA, USA) Duplex derived Primary Patency based on PSVR ≤2.5. KM survival estimates at 365 days
- [*] freedom from CEC adjudicated clinically driven TLR by KM survival estimates at 365 days
- 1. Schroeder H, Werner M, Meyer DR, Reimer P, Krüger K, Jaff MR, Brodmann M; ILLUMENATE EU RCT Investigators. Circulation. 2017 Jun 6;135(23):2227-2236.
- 2. Krishnan P, Faries P, Niazi K, Jain A, Sachar R, Bachinsky WB, Cardenas JA, Werner M, Brodmann M, Mustapha JA, Mena-Hurtado Cl, Jaff MR, Holden AH, Lyden SP. Stellarex Drug-Coated Balloon for Treatment of Femoropopliteal Disease: 12-Month Outcomes from the Randomized ILLUMENATE Pivotal and Pharmacokinetic Studies. *Circulation*. 2017;136:1102-1113

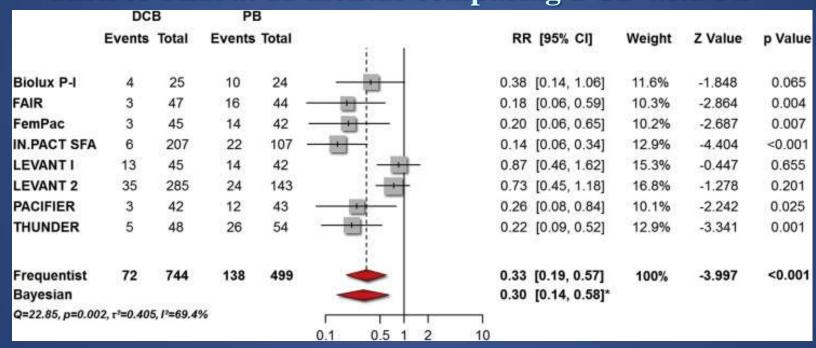
ILLUMENATE Global: Similar 1-Year Patency Primary Patency through 1 year



Primary Patency at 1 year Core Lab Adjudicated

- 1. Schroeder H. et al. Catherization and Cardiovascular Interventions . 2015;86:278-86
- 2. Schroeder H. et al. Circulation. 2017 Jun 6;135(23):2227-2236.
- 3. Krishnan P. et al. *Circulation*. 2017;136:1102-1113
- 4. Zeller T. Oral Presentation LINC 2017
- 5. Scheiert D. et al. J Am Coll Cardiol Interv 2014;7:10-19
- 6. Rosenfield New England Journal of Med. 2015;373:145-53
- 7. Scheinert D. Oral Presentation. Charing Cross 2017

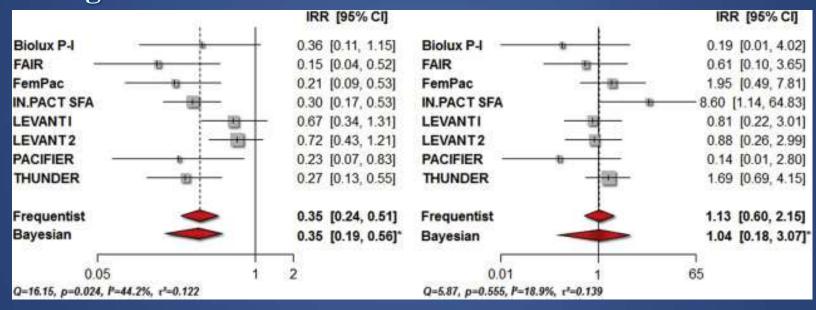
Primary Patency at 2 years Core Lab Adjudicated



*Exact rates, KM estimate not reported

Schroeder H., et al. *Catheterization and cardiovascular interventions* 2015;86:278-86
M. Brodmann. ILLUMENATE European Randomized Trial: 2-year Results. Oral Presentation. VIVA September, 2017, Las Vegas, NV. Scheinert et al. J Am Coll Cardiol Intv 2014; 7:10-9
Laurich C. Oral Presentation. *SVS*. 2015

DCB vs. Plain balloon angioplasty for Femoropopliteal artery disease


Meta-Analysis of Randomized TrialsRisk of TLR at 12 months comparing DCB with PB

Conclusion DCB significantly reduce the risk of TLR as compared with PB without any effect on all-cause death.

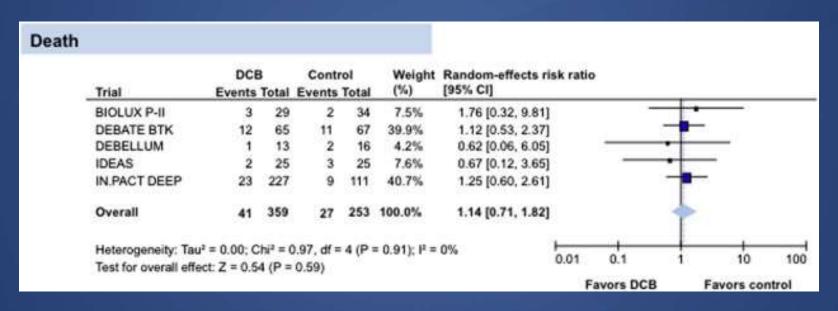
DCB vs. Plain balloon angioplasty for Femoropopliteal artery disease

Meta-Analysis of Randomized Trials
Long-Term TLR and All-cause Death in DCB versus PB

Conclusion DCB significantly reduce the risk of TLR as compared with PB without any effect on all-cause death.

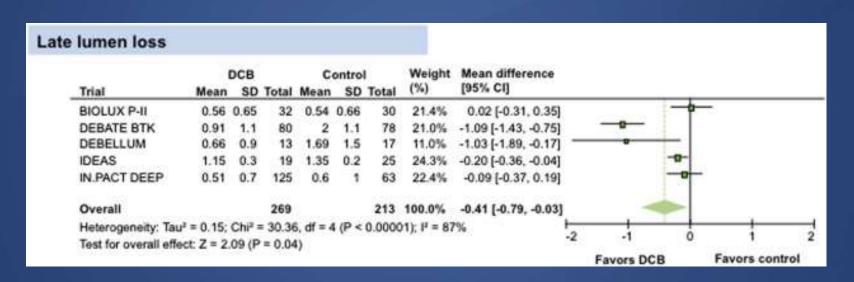
Meta-Analysis of Randomized Trials Risk of TLR comparing DCB with control

BIOLUX P-II 10 29 10 34 21.1% 1.17 [0.57, 2.42] DEBATE BTK 14 65 32 67 29.7% 0.45 [0.27, 0.76] DEBELLUM 3 13 8 16 11.6% 0.46 [0.15, 1.40] IDEAS 3 22 2 26 5.6% 1.77 [0.32, 9.67] IN.PACT DEEP 35 226 22 111 32.1% 0.78 [0.48, 1.27] Overall 65 355 74 254 100.0% 0.71 [0.47, 1.09]		Events	B Total	Contr		Weight (%)	Random-effects ris [95% CI]	sk ratio	
DEBELLUM 3 13 8 16 11.6% 0.46 [0.15, 1.40] IDEAS 3 22 2 26 5.6% 1.77 [0.32, 9.67] IN.PACT DEEP 35 226 22 111 32.1% 0.78 [0.48, 1.27]	BIOLUX P-II	10	29	10	34	21.1%	1.17 [0.57, 2.42]	-	
IDEAS 3 22 2 26 5.6% 1.77 [0.32, 9.67] IN.PACT DEEP 35 226 22 111 32.1% 0.78 [0.48, 1.27]	DEBATE BTK	14	65	32	67	29.7%	0.45 [0.27, 0.76]		
IN.PACT DEEP 35 226 22 111 32.1% 0.78 [0.48, 1.27]	DEBELLUM	3	13		16	11.6%	0.46 [0.15, 1.40]		
	IDEAS	3	22	2	26	5.6%	1.77 [0.32, 9.67]	-	
Overall 65 355 74 254 100.0% 0.71 [0.47, 1.09]	IN.PACT DEEP	35	226	22	111	32.1%	0.78 [0.48, 1.27]		
	Overall	65	355	74	254	100.0%	0.71 [0.47, 1.09]	*	

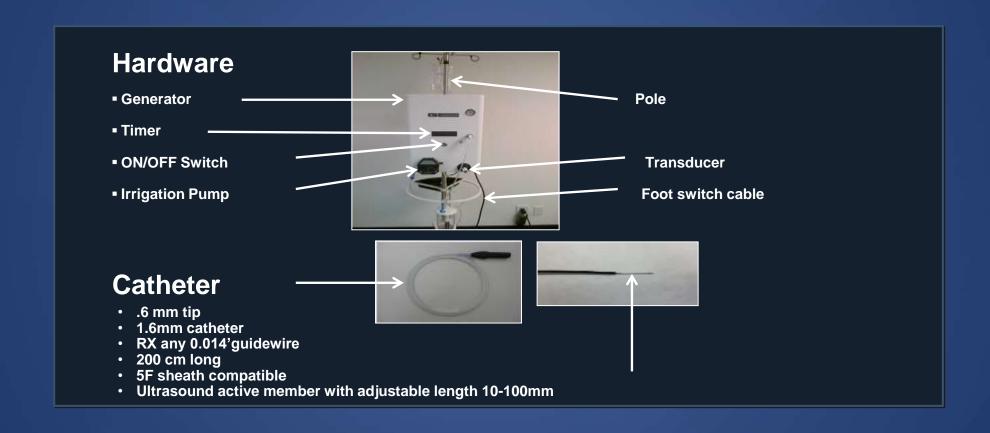


Meta-Analysis of Randomized Trials Risk of Amputation comparing DCB with control

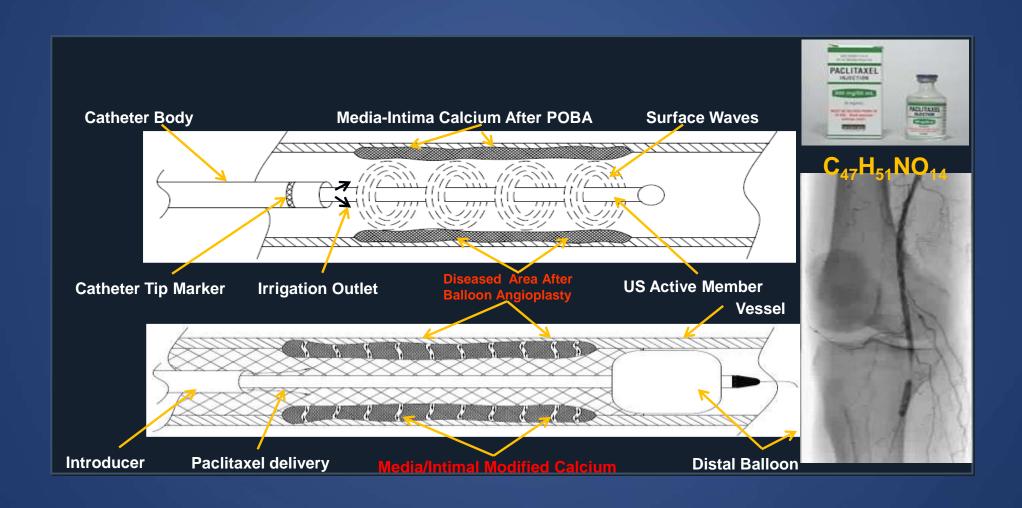
	Events	B Total	Contr	27.5	Weight (%)	Random-effects risi [95% CI]	k ratio		15/2/5		
BIOLUX P-II	8	29	9	34	23.7%	1.04 [0.46, 2.35]		9	-	4	
DEBATE BTK	18	65	21	67	56.1%	0.88 [0.52, 1.50]			-		
DEBELLUM	1	13	2	16	3.0%	0.62 [0.06, 6.05]			•		
IDEAS	1	25	2	27	2.9%	0.54 [0.05, 5.59]	10		•	_	
IN PACT DEEP	20	227	4	111	14.3%	2.44 [0.86, 6.98]			1		
Overall	48	359	38	255	100.0%	1.04 [0.70, 1.54]			+		
Heterogeneity: Tau	= 0.00: C	chi² = :	3.53. df =	4 (P	= 0.47); 12 =	0%	0.01	0.1	-	10	10



Meta-Analysis of Randomized Trials Risk of Death comparing DCB with control



Meta-Analysis of Randomized Trials
Risk of Late lumen loss comparing DCB with control




The GenesisTM System

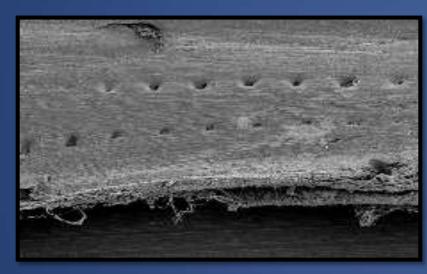
Method of Action

PACUS trial Freedom from TLR 24m FU

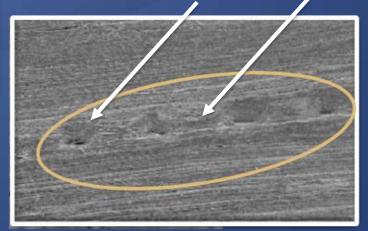
Serranator® Alto PTA Serration Balloon Catheter

- 4 embedded serrated metal strips
- Nylon, semi-compliant balloon
- 6F Sheath with 0.018" GW
- 4.0, 5.0, 6.0 mm balloon diameters
- 40, 80, 120 mm balloon lengths

Designed to create linear, interrupted scoring along the endoluminal surface


Serranator® Alto PTA Serration Balloon Catheter Mechanism of action

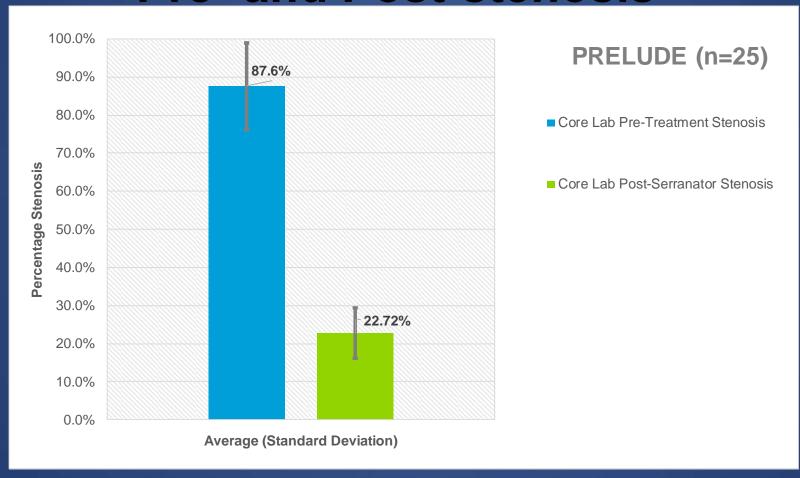
- As the Serranator inflates and contacts the artery wall, the strips create multiple interrupted lines of scoring (serrations)
- Serrations are responsive to the balloon's energy, enabling predictable and controlled lumen expansion along the lines



Serranator® Alto PTA Serration Balloon Catheter Mechanism of action

Scanning Electron Microscopy (SEM) of porcine tissue at 7-days

Serrations create linear and circumferential expansion



PRELUDE study Result in calcification

Characteristic	Results
Degree of Calcification None/mild Moderate Severe*	11 (44%) 7 (28%) 7 (28%)
Avg. Lumen Gain	
Overall Severe Calcification	3.36 mm 3.45 mm

^{*} Severe calcification of target lesion: circumferential calcium and >50% of lesion length.

PRELUDE study Pre- and Post-stenosis

EffPac-RCT Trial

Efficacy: Target Lesion Revascularization (TLR)

	LUMINOR®	РОВА	Relative Risk, 95% CI (LUMINOR® vs. POBA)	Number needed t o treat (NNT)	p value
TLR 6M (%)	1.3 (1/76)	17.1 (13/76)	0.082 [CI: 0.012; 0.560]	7	<0.001
TLR 12M (%)	1.3 (1/76)	18.7 (14/75)	0.077 [CI: 0.011; 0.526]*	6	<0.001

Efficacy: Patency

	LUMINOR®	РОВА	Relative Risk, 95% CI (LUMINOR® vs. POBA)	Number needed to treat (NNT)	p value
Patency 6M (%)	94.7 (72/76)	75.0 (57/76)	1.26 [CI: 1.100; 1.443]	6	<0.001
Patency 12M (%)	90.3 (65/72)	65.3 (47/72)	1.38* [CI: 1.146; 1.664]	4	<0.001

Marcus Thieme MD, TCT 2018

The VIVA Calcium Scale Unification Project: Proposed Investigational Plan

IN.PACT RTC/Global Japan IP SFA ILLUMENATE RCT/ ILLUMENATE Global SFA-LONG Study

Image Collection

>1000 baseline DCB/PTA procedure angiograms

Core Lab Analysis

- Core lab collects patient demographic/ procedural data from industry partners; analysis & de-identification

Statistical Analysis

- Procedural (≤30d) & CD-TRL thru one-year

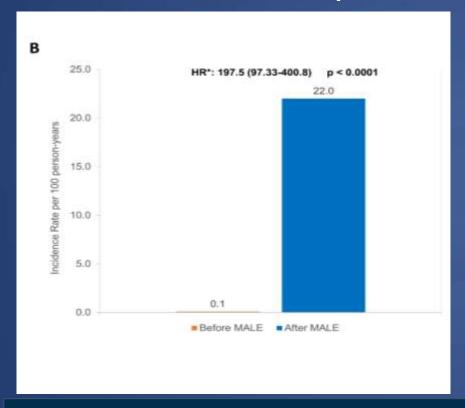
Review & Consensus

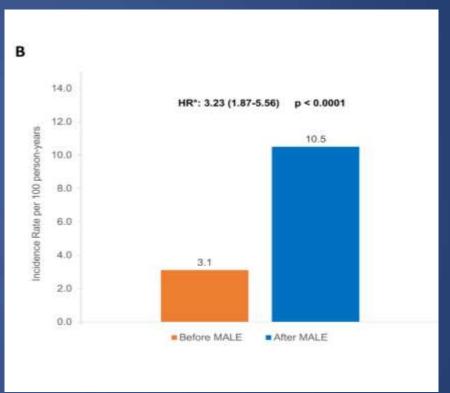
- Determine parameters affecting outcomes

- Proposed definition
- Peer review

Application

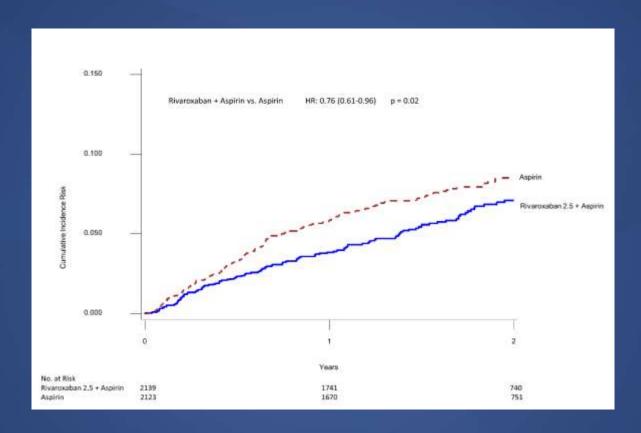
- Retrospective cohorts
- Ongoing studies
- A future standard for DCB trials± atherectomy or PTA adjuncts


Courtesy of Krishna Rocha-Singh, MD


Jeffrey J. Popma MD TCT 2018

High Rate of Amputation & Death after MALE in PAD : Results from COMPASS

Incidence of Vascular Amputation



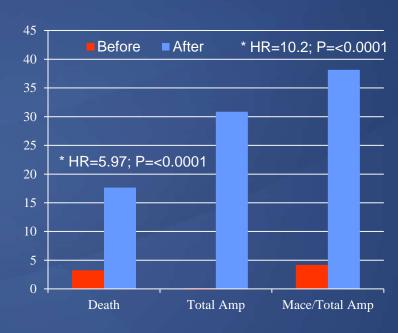
Conclusion: MALE is associated with a poor prognosis: 3 fold increase in death,200 fold increase in amputation.

Anand SS et al, J Am Coll Cardiol. 2018 May 22;71(20):2306-2315

High Rate of Amputation & Death after MALE in PAD : Results from COMPASS

Conclusion: Compared to aspirin, Riva/Aspirin combination prevents MALE, vascular interventions, and total peripheral vascular outcomes

Anand SS et al, J Am Coll Cardiol. 2018 May 22;71(20):2306-2315



High Rate of Amputation & Death after MALE in PAD : Results from COMPASS

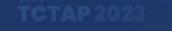
Riva/Aspirin

Aspirin Only

*HR determined by time-dependent Cox model

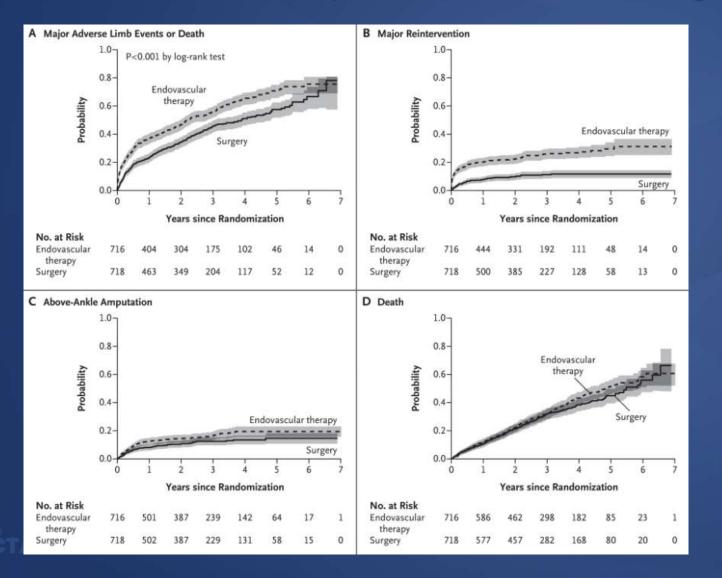
Conclusion: Outcomes after MALE are worse for aspirin-treated patients

Anand SS et al, J Am Coll Cardiol. 2018 May 22;71(20):2306-2315


DES vs DCB Revascularization in Patients wiith Femoropopliteal Arterial Disease

REAL PTX: randomized 150-patient trial of paclitaxel-based devices that included lesions ≤ 30 cm, CTOs, and severe calcification.

- One in four DCB patients required bailout stenting
- Primary patency was similar at 12 months, but by 36 months a tre nd favored DES over DCB (54% vs 38%; P = 0.17)
- In lesions > 10 cm, restenosis accrued over time in both treatment groups but there was a numerically lower patency rate for DCB at 3 years


Conclusion: The head-to-head comparison suggests equivalent results at 12 months, with a patency advantage for DES at 36 months.

Bausback Y, et al. J Am Coll Cardiol. 2019;73:667-679.

Surgery or Endovascular Therapy for Chronic Limb-Threatening Ischemia

randomized 1830 patient with CLTI and infra-inguinal peripheral artery disease

Conclusion: In patients with CLTI, initial bypass surgery was associated with a lower incidence of major adverse limb events or death than initial endovascular intervention.

Alik Farber, et al. N Engl J Med 2022; 387:2305-2316.