# **Chronic Total Occlusion**





# **Trials and Guidelines**





# Algorithm for crossing CTO from Asia Pacific CTO club



Harding et al. JACC cardiovascular intervention Vol. 10, No. 21, 2017

#### TCTAP 2023

### Algorithm for antegrade wire escalation

| Proximal Cap                                                                                              | Visible channel<br>Low penetration force<br>wire with polymer<br>jacket and tapered tip<br>↓<br>Intermediate penetration<br>force wire                                        | Tapered proximal cap<br>Low penetration<br>force wire<br>Intermediate penetration<br>force wire | Blunt proximal cap<br>Intermediate penetration<br>force wire<br>m High penetration<br>force wire |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| CTO body                                                                                                  | If a high penetration-force wire has been used to the puncture proximal<br>cap step down to a lower penetration-force wire unless occlusion short<br>with unambiguous course. |                                                                                                 |                                                                                                  |
| Distal Cap Escalation from softer more steerable wire to a higher penetration-force wire may be required. |                                                                                                                                                                               |                                                                                                 |                                                                                                  |



Harding et al. JACC cardiovascular intervention Vol. 10, No. 21, 2017

## Coronary Artery CTO Revascularization Criteria

| Chronic total occlusion of 1 major epicardial coronary artery, without other coronary stenoses |                                     | CCS angina class<br>(*appropriate use score, 1-9) |              |            |
|------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------|--------------|------------|
| Noninvasive<br>testing                                                                         | Maximal anti-ischemic<br>medication | ASx                                               | I, II        | III, IV    |
| Low-risk                                                                                       | No                                  | l(1)                                              | l(2)         | I(3)       |
| findings                                                                                       | Yes                                 | l(1)                                              | U(4)         | U(6)       |
| Intermediate-risk                                                                              | No                                  | l(3)                                              | U(4)         | U(6)       |
| findings                                                                                       | Yes                                 | U(4)                                              | U(5)         | A(7)       |
| High-risk                                                                                      | No                                  | U(4)                                              | U(5)         | A(7)       |
| findings                                                                                       | Yes                                 | U(5)                                              | A(7)         | A(8)       |
|                                                                                                | * 1-3 : Inappropriate               | e, 4-6 : Uncerta                                  | ain, 7-9 : A | ppropriate |



Patel et al. JACC Vol. 59, No. 9, 2012



# **DECISION-CTO**

Patients with PCI-eligible CTO Lesions



28% TCTAP 2023



# **DECISION-CTO**

Composite of Death, MI, Stroke and any Revascularization after 3-year



28th TCTAP 2023

Seung-Whan Lee et al. Circulation Vol. 139, No. 14, 2019



## **EURO-CTO**



TCTAP 2023



### **EURO-CTO: Study flowchart**



28th TCTAP 2023









### Primary safety endpoint at 36 months







### Primary safety endpoint at 36 months

|                                   | OMT       | PCI       | Р          |
|-----------------------------------|-----------|-----------|------------|
|                                   | (N=137)   | (N=259)   | (log rank) |
|                                   |           |           |            |
| Patients with any adverse event   | 27 (20.1) | 27 (10.7) | 0.019      |
| Safety events                     | 4 (2.9)   | 13 (5.0)  | 0.32       |
| Cardiovascular death              | 2 (1.5)   | 7 (2.7)   | 0.42       |
| Non-fatal MI                      | 2 (1.5)   | 6 (2.3)   | 0.56       |
| Ischemia-driven revascularization | 25 (18.2) | 19 (7.3)  | 0.0035     |
| Target revascularization          | 23 (16.8) | 10 (3.9)  | 0.0002     |
| Cerebrovascular event             | 1 (0.7)   | 5 (1.9)   | 0.27       |
| Stent thrombosis                  | 0         | 1 (0.4)   |            |





#### OPEN-CTO

#### utcomes, Patient health status, and Efficiency iN Chronic Total Occlusion hybrid procedures

- 1. Patients with at least one CTO vessel
- 2. 18 years and older
- 3. Patients is scheduled for a PCI for at least one CTO with TIMI antegrade flow of 0

Investigator-initiated multicenter, single-arm registry (12 centers with 1000 patients)

- Observational studyHybrid approach
- 1, 6 and 12 month outcomes
- 1. Health status
- 2. Resource use
- 3. Depression
- 4. Rehospitalization
- 5. Survival
- 6. Cost





### **OPEN-CTO** Health Status Trajectory after CTO-PCI



Grantham JA, CTO Summit 2017





### **OPEN-CTO** Health Status Trajectory after CTO-PCI





Hirai et al. Circ Cardiovasc Interv. 2019;12:e007558



### **PROGRESS CTO score**

**Proximal cap** ambiguity (1 point)

Absence of "interventional" collaterals (1 point)

Moderate/ severe tortuosity (1 point)

**Circumflex CTO** (1 point)



Poor cap visualization or absence of clearly tapered stump



collateral

2 bends>70 degrees or 1 bend>90 degrees



#### (PROGRESS CTO) Complications Score

The PROGRESS CTO complication score is a useful tool for prediction of periprocedural complications in CTO PCI.



Danek BA, Karatasakis A et al J Am Heart Assoc. 2016;5:e004272

Christopoulos et al. JACC Cardiovasc Interv. 2016 Jan 11;9(1):1-9.





#### Recovery of Left Ventricular Function in Coronary Chronic Total Occlusion















#### **EXPLORE: MRI-Assessed LVEF at 4 months**



J. Henriques, TCT 2015



### Impact of CTO on Outcomes: BARI 2D



TCTAP 2023

Damluji et al, Am J Cardiol 2016;117:1031



#### Impact of OMT after Failed vs. Successful CTO-PCI



PH Lee et al, J Am Coll Cardiol Intv 2016;9:530-8

TCTAP 2023



#### Impact of OMT after Failed vs. Successful CTO-PCI



PH Lee et al, J Am Coll Cardiol Intv 2016;9:530-8



### **AD Hoc vs Planned CTO-PCI**



TCTAP 2023

Sandoval et al. J Invasive Cardiol. 2019 Jan 15



### **Multivariable analysis for technical success**

| Variable                           |                                     | OR                    | 95% CI    | P-Value |
|------------------------------------|-------------------------------------|-----------------------|-----------|---------|
| Ad hoc CTO-PCI                     | -+                                  | 0.98                  | 0.60-1.59 | .92     |
| Age [per 10-year change]           | -                                   | 0.96                  | 0.91-1.02 | .17     |
| Adequate Distal Landing Zone       | H=-I                                | 1.13                  | 0.84-1.53 | .42     |
| Bifurication at Distal Cap         |                                     | 0.54                  | 0.41-0.72 | <.001   |
| Calcification (moderate to severe) | +++                                 | 0.76                  | 0.56-1.01 | .06     |
| Interventional Collaterals         | H=4                                 | 2.05                  | 1.55-2.69 | <.001   |
| Lesion Length (per 10 mm change)   | 0.0                                 | 0.98                  | 0.96-1.01 | .20     |
| Prior Heart Failure                | <b>⊢</b> ••1                        | 0.79                  | 0.59-1.06 | .12     |
| Prior Myocardial Infarction        |                                     | 0.75                  | 0.56-0.99 | .04     |
| Proximal Cap Ambiguity             | H                                   | 0.42                  | 0.32-0.56 | <.001   |
| 0.10                               | ) 1.00                              | 10.00                 |           |         |
| Decri<br>Technica                  | ease of Incre<br>al Success Technic | ease of<br>al Success |           |         |



#### Sandoval et al. J Invasive Cardiol. 2019 Jan 15



## Retrograde approach for CTO-PCI



Dimitri K et al, Circ Cardiovasc Interv. 2016;9:e003434.





# **COMET-CTO**



Figure 1. Patients' flow diagram. PCI indicates percutaneous coronary intervention; OMT, optimal medical therapy; and FUP, follow-up.



#### Stefan A. Juricic et al, Int Heart J 2021



# **COMET-CTO**



OMT baseline OMT FUP PCI baseline PCI FUP

**Figure 2.** SAQ subscale changes. QoL indicates quality of life; PL, physical limitation; AS, angina stability; AF, angina frequency; TS, treatment satisfaction; PCI, percutaneous coronary intervention; OMT, optimal medical therapy; and FUP, follow-up.  $\Delta$ : difference between f-up and baseline mean values.

TCTAP 2023

#### Juricic, et al, Int Heart J 2021



#### Canadian Multicenter Chronic Total Occlusion Registry Ten-Year Follow-Up Results of Chronic Total occlusion Revascularization

- The primary data source from Canadian Multicenter CTO registry (2008.4 ~ 2009.7)
- Revascularization decisions were determined by local routine care

•All PCIs were performed in 3 centers

Prospective multicenter cohort study
Revascularization group was divided into CTO revasc vs no CTO revasc

- Primary outcome
  - All-cause mortality
- Secondary outcomes
  - Hospitalizations for ACS or HF
  - Revascularization, a composite of TVR or non-TVR beyond 90 days post index procedure



Strauss et al, Circ cardiovascular 2021



### **All-cause mortality**







### Adverse clinical events at 10 years

| Adverse outcome         | Total                | CTO revasc<br>(n=458) | No CTO revasc<br>(n=1166) |
|-------------------------|----------------------|-----------------------|---------------------------|
| Mortality, %            | 32.6 (30.3-<br>35.0) | 22.7 (19.0-26.9)      | 36.6 (33.8-39.5)          |
| Revasc (PCI), %         | 10.6 (9.2-12.2)      | 11.1 (8.4-14.2)       | 10.5 (8.8-12.4)           |
| Revasc<br>(CABG), %     | 11.1 (18.3-22.3)     | 3.6 (2.2-5.7)         | 14.0 (12.1-16.1)          |
| Revasc<br>(PCI/CABG), % | 20.3 (18.3-<br>22.3) | 14.0 (11.0-17.4)      | 22.8 (20.4-25.3)          |
| Hospital<br>(ACS), %    | 14.7 (12.9-<br>16.5) | 10.0 (7.4-13.1)       | 16.6 (14.4-18.9)          |
| Hospital (HF), %        | 11.9 (10.3-13.6)     | 9.6 (7.0-12.6)        | 12.8 (10.9-14.8           |





# Cumulative incidence of later revascularization





Strauss et al, Circ cardiovascular 2021



### Cumulative incidence of ACS hospitalization



1012 1023

#### Strauss et al, Circ cardiovascular 2021



### **Periprocedural Risk Prediction Scores in CTO**

• Studies included (5 publications) with 8 CTO PCI specific scores (to October 26, 2022)

- (1) Angiographic coronary artery perforation
- (2) Major adverse cardiovascular events (MACE)
- (3) All-cause mortality
- (4) Perforation requiring pericardiocentesis
- (5) Acute myocardial infarction
- (6) Perforation requiring any treatment
- (7) Contrast-induced acute kidney injury



### **PROGRESS-CTO complication scores and the**

| CTO PCI complication scores      | Events                                                                                          | Variables            | Points assigned | Risk score, complication risk |
|----------------------------------|-------------------------------------------------------------------------------------------------|----------------------|-----------------|-------------------------------|
| PROGRESS-CTO complications score | n = 44 (2.8%)                                                                                   | Age >65 years        | + 3             | 0–2, 0.2%                     |
| (score range: 0–6)               | MACE: composite of death,                                                                       | Lesion length ≥23 mm | + 2             | 3-4, 2.0%                     |
|                                  | MI, stroke, urgent repeat<br>revascularization (re-PCI or<br>surgery), or<br>pericardiocentesis | Retrograde strategy  | + 1             | ≥5, 6.6%                      |
| OPEN-CLEAN perforation score     | n = 89 (8.9%)                                                                                   | Prior CABG           | + 1             | 0-1, 2.2%                     |
| (score range: 0-7)               | angiographic perforation                                                                        | Occlusion length     | + 1             | 2, 3.3%                       |
|                                  |                                                                                                 | 20-59 mm             | + 2             | 3, 4.4%                       |
|                                  |                                                                                                 | ≥60 mm               | + 1             | 4, 8.2%                       |
|                                  |                                                                                                 | LVEF <50%            | + 1             | 5, 14.9%                      |
|                                  |                                                                                                 | Age:                 | + 2             | 6-7, 30.9%                    |
|                                  |                                                                                                 | 50-<70 years         | + 1             |                               |
|                                  |                                                                                                 | ≥70 years            |                 |                               |
|                                  |                                                                                                 | Calcification        |                 |                               |
| PROGRESS-CTO MACE (score         | n = 215 (2.05%)                                                                                 | Age ≥65 years        | + 1             | 0, 0.4%                       |
| range: 0-7)                      | MACE: composite of death,                                                                       | Female gender        | + 2             | 1, 0.7–0.9%                   |
| ,                                | MI, stroke, urgent repeat                                                                       | Moderate-severe      | + 1             | 2, 1.1–1.9%                   |
|                                  | revascularization (re-PCI or                                                                    | calcification        | + 1             | 3, 1.6–2.6%                   |
|                                  | surgery), or                                                                                    | Blunt/no stump       | + 1             | 4, 2.6-4.7%                   |
|                                  | pericardiocentesis                                                                              | Antegrade dissection | + 2             | 5, 4.4–6.1%                   |
|                                  |                                                                                                 | and re-entry         |                 | 6, 7.2–9.3%                   |
|                                  |                                                                                                 | Retrograde strategy  |                 | 7, 11.7%                      |
| PROGRESS-CTO Mortality (score    | n = 47 (0.45%) all-cause                                                                        | Age ≥65 years        | + 1             | 0, 0.05%                      |
| range: 0-4)                      | mortality                                                                                       | Moderate-severe      | + 1             | 1, 0.1–0.2%                   |
|                                  |                                                                                                 | calcification        | +1              | 2, 0.3-0.5%                   |
|                                  |                                                                                                 | LVEF ≤45%            | +1              | 3, 0.5–1.1%                   |
|                                  |                                                                                                 | Antegrade dissection | +1              | 4, 1.9–2.4%                   |
|                                  |                                                                                                 | and re-entry         |                 |                               |
|                                  |                                                                                                 | Retrograde strategy  |                 | CVRF                          |

### **PROGRESS-CTO complication scores and the**

| CTO PCI complication scores                                           | Events                                                                                                                                        | Variables                                                                                                                         | Points assigned                        | Risk score,complication risk                                                   |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|
| PROGRESS-CTO pericardiocentesis<br>(score range: 0–5)                 | n = 83 (1.08%)<br>perforation requiring pericardiocentesis                                                                                    | Age ≥65 years<br>Moderate-severe<br>calcification<br>Female gender<br>Antegrade dissection<br>and re-entry<br>Retrograde strategy | + 1<br>+ 1<br>+ 1<br>+ 1               | 0, 0.2%<br>1, 0.4-0.6%<br>2, 0.6-1.6%<br>3, 1.3-3.6%<br>4, 2.8-7.2%<br>5, 8.7% |
| PROGRESS-CTO Acute MI (score<br>range: 0−3)                           | n = 66 (0.63%)<br>acute MI                                                                                                                    | Prior CABG<br>Atrial fibrillation<br>Blunt/no stump                                                                               | +2<br>+ 1<br>+ 1<br>+ 1                | 0, 0.2<br>1, 0.4-0.5%<br>2, 1.1-1.2%<br>3, 2.8%                                |
| PROGRESS-CTO perforation score<br>(score range: 0–5)                  | n = 503 (4.9%)<br>perforation requiring any treatment                                                                                         | Age ≥65 years<br>Moderate-severe<br>calcification<br>Blunt/no stump<br>Antegrade dissection and re-entry<br>Retrograde strategy   | + 1<br>+ 1<br>+ 1<br>+ 1<br>+ 2        | 0, 0.7%<br>1, 0.9-1.6%<br>2, 1.7-2.9%<br>3, 3.0-5.0%<br>4, 6.4-8.0%<br>5, 11%  |
| Contrast-induced acute kidney<br>injury score* (score range:<br>0-16) | n = 17 (2.7%)<br>absolute increase in serum creatinine<br>of ≥0.5 mg/100 ml<br>over baseline values within<br>48–72 h after contrast exposure | Age ≥75 years<br>LVEF <40%<br>Serum creatinine >1.5 mg/100 ml<br>Serum albumin (g/L)<br>≤30<br>>30−40                             | + 4.5<br>+ 3.5<br>5<br>+ 2<br>+ 1<br>0 | <4, 0−0.8%<br>4−7, 5.3%−8.2%<br>≥7, 13−31%                                     |

#### **CTO PCI-specific periprocedural complication risk scores**

| CTO PCI Complication Scores                | Risk Score, Complication Risk                            |
|--------------------------------------------|----------------------------------------------------------|
| PROGRESS-CTO complications score           | 0−2 (low risk)<br>3−4 (moderate risk)<br>≥5 (high risk)  |
| OPEN-CLEAN perforation score               | 0−2 (low risk)<br>3−4 (moderate risk)<br>5−7 (high risk) |
| PROGRESS-CTO MACE                          | 0−2 (low risk)<br>3−4 (moderate risk)<br>5−7 (high risk) |
| PROGRESS-CTO mortality                     | 0 (low risk)<br>1−2 (moderate risk)<br>3−4 (high risk)   |
| PROGRESS-CTO pericardiocentesis            | 01 (low risk)<br>2−3 (moderate risk)<br>4−5 (high risk)  |
| PROGRESS-CTO acute MI                      | 01 (low risk)<br>2 (moderate risk)<br>3 (high risk)      |
| PROGRESS-CTO perforation score             | 01 (low risk)<br>2–3 (moderate risk)<br>4–5 (high)       |
| Contrast-induced acute kidney injury score | <4, (low risk)<br>4−6 (moderate risk)<br>≥7, (high risk) |


### Chronic Total Occlusion : Devices





### **Guidewires for CTO**





### **Features required for CTO wires**

*Penetration force* for penetrating proximal fibrous cap and advancing into true lumen

*Pushability* for crossing chronic occlusions and complex lesions with heavy calcifications and tough fibrous tissues

Steerability for easy manipulate in various directions with good torque transmission

Shaping Memory of the tip





## **Choice of CTO Guidewire**



| Hydrophobic wire                                                                                              | Hydrophilic wire                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Better tactile response<br>Good for older, fibro-calcific lesions<br>Good for initial piercing of fibrous cap | Good for less chronic total occlusion<br>; softer<br>May find microchannels easier<br>Follow path of least resistance<br>; easier to go extra-luminal |





### Hallmarks of a CTO Guidewire



Coatings Body : Hydrophilic for tracking Body and tip : Hydrophobic for torque response



#### Polymer Jacket Type to Reduce the Resistance







#### Guidewire Selection Stiff wires

Miracle 4.5g, 6g (Asahi Intec) for standard step-up strategy Miracle 3g → Miracle 4.5g → Miracle 6g → Miracle 12g or Conquest

Miracle 12g (Asahi Intec) for so tight CTO to penetrate proximal or distal cap to crash tight plaque within CTO to puncture from pseudo to true lumen

**Conquest Pro (Asahi Intec)** for <u>so tight CTO</u> to penetrate proximal or distal cap to penetrate tight plaque within CTO to puncture from pseudo to true lumen





### **Guidewire Selection**

#### Miracle 12g is more controllable

to penetrate proximal cap to advance in the tight CTO with bending, to puncture from pseudo to true lumen

#### Conquest should be used

only when the appropriate direction can be seen to penetrate distal cap to puncture from pseudo to true lumen

#### Conquest should not be used

to seek the true lumen or advance for long distance





#### **Guidewire Selection for CTO** Steps for Success

Become familiar with one or two wire sets

Over-the wire balloon or Transit catheter

Frequent wire changes

Frequent reshaping of wire tip

Stepwise approach

Penetration of proximal cap

Wire passage through the body of the CTO

Penetration of the distal cap





# **Controlled Drilling**



Clinical application: Inside *calcified and fibrotic CTO* segment, *ISR*, *Long CTO* segment





### Penetration



Penetrating the obstruction aiming at the target. The direction of the guide wire is more precisely controlled. Tapered tip guide wires permit higher penetrating forces.

**Clinical Application**: Penetrate *proximal and distal cap*, *False to true lumen (IVUS)*, Change wire direction (2<sup>nd</sup> wire in *parallel wire technique*)





### **Sliding-Microchannel tracking**



Very lubricious polymer covered guide wires are used to slide through narrow lesions or functional occlusions.

Clinical Application: Tracking *micro channels* (visible and invisible)





## **Collateral tracking**



Recommended Guide Wires Tapered Polymer Tip Guide Wire ASAHI FIELDER XT Straight Polymer Tip Guide Wire ASAHI FIELDER FC ASAHI FIELDER

When an antegrade approach to the CTO fails or is contraindicated, the CTO can sometimes be approached from the retrograde direction. Flexible polymer covered guide wires are recommended for navigation through septals.

Clinical Application: Retrograde techniques, CART, Reverse IVUS guided CART





## **Chronic Total Occlusion**



Miracle 12 / MIRACLE bros 12 Intermediate / MEDIUM



PENETRATION TECHNIQUE Conquest / CONFIANZA

Miracle 6 / MIRACLE bros 6

Conquest Pro / CONFIANZA PRO Conquest Pro 12 / CONFIANZA **PRO 12** Miracle 12 / MIRACLE bros 12



SLIDING TECHNIQUE Fielder, Fielder FC, Fielder XT



RETROGRADE APPROACH Fielder, Fielder FC, Fielder XT





## **Chronic Total Occlusion**







# **Chronic Total Occlusion**



28th TCTAP 2023



#### Access wires classified by core design

| _              | Stainless Steel                | Nitinol                    |                                   |
|----------------|--------------------------------|----------------------------|-----------------------------------|
| Shaping Ribbon | High Torque F2                 | BMW Universal-2*<br>Cougar | Abbott<br>Asahi                   |
| Core-to-tip    | Pro-Water<br>Marvel<br>Advance | Run-Through<br>BMW Elite   | Boston Sci<br>Medtronic<br>Terumo |
| Compound tip   | Sion Blue<br>Samurai           |                            |                                   |



#### 28th TCTAP 2023

#### Approach to antegradetrue-to-true wiring contemporary wire modulation







#### **Directed Penetration wires** progressive tip load, progressive torsional rigidity

Conventional 0.014 Hi-Torque Standard Miracle Bros Halberd

Tapered tip coil Confianza Cross-It XT Hornet (0.008")

Stiff Jacketed Pilot 200 Gladius







#### 2<sup>nd</sup>/3<sup>rd</sup> Gen Directed Penetration wires



| Gaia     | Тір Туре     | Diam  | Load   | 0 |
|----------|--------------|-------|--------|---|
| Gaia 1st | Coil-in-coil | 0.010 | 1.7 gm |   |
| Gaia 2nd | Coil-in-coil | 0.011 | 3.5 gm |   |
| Gaia 3rd | Coil-in-coil | 0.012 | 4.5 gm |   |



# **Collateral Crossing wires**

low tip load, atraumatic tip shape, lubricity

| Fielder FC   | 0.014" |
|--------------|--------|
| Pilot 50     | 0.014" |
| Fielder XT-A | 0.009" |

0.8gm 1.0gm 1.0gm



Sion 0.8gm Sion Black 0.8gm

0.014" multi-element composite core







# **Big Tips Are for Waiters!**



#### 0.007" microchannel

0.014" tip



0.007" microchannel





## **ASAHI Neo's Fielder**







### ASAHI FIELDER FC PTCA Guide



#### **Device description**

: Polymer covered guide wire with extra support for effortless movement in tortuous anatomy

Stiffness

: Tip Load = 0.8 g





# **Fielder XT wire**



#### One-Piece Core Wire

: Supports the entire guidewire from the proximal to the distal end. This design transmits the guidewire torque fully from one end to the other.

#### Tapered Tip

: 0.009" (0.25mm) tapered tip facilitates trackability in tortuous vessels such as fine septal channels with corkscrew aspect.

#### Flat Core Tip

: Provides flexibility and excellent shaping memory.

#### Smooth Tapered Core

: Enhances support performance which provides excellent guidewire trackability.





# **Fielder XT wire**



#### One-Piece Core Wire

: Supports the entire guidewire from the proximal to the distal end. This design transmits the guidewire torque fully from one end to the other.

#### Tapered Tip

: 0.009" (0.25mm) tapered tip facilitates trackability in tortuous vessels such as fine septal channels with corkscrew aspect.

#### Flat Core Tip

: Provides flexibility and excellent shaping memory.

#### Smooth Tapered Core

: Enhances support performance which provides excellent guidewire trackability.





### The ASAHI FIEDLER™ FC & XT

 ASAHI FIELDER<sup>™</sup> FC maintains a softer tip, more intermediate support\*

#### • ASAHI FIELDER<sup>™</sup> XT maintains a softer tip,



ILLILLY.



### The ASAHI FIEDLER<sup>™</sup> FC & XT







# **Beyond Fielder XT**







### Fielder XT-A & Fielder XT-R







# Fielder XR Series: Performance comparison







# Fielder XR Series: Performance comparison



Fielder XT-A has better performance to cross the occluded lesion.





68

# Fielder XR Series: Performance comparison



Fielder XT-R has better performance for the channel tracking.





69

#### **ASAHI Wires:**

**Miraclebros & Confianza** 

Miraclebros 3g Miraclebros 4.5g Miraclebros 6g Miraclebros 12g

Confianza 9g CP(Confianza Pro) 9g CP(Confianza Pro) 12gExcellent trackability, 1:1 torque, and tactile response

Incremental tip stiffness and wire support (Miraclebros line)

Smallest tapered tip design (Confianza & CP, 0.009")



### **Miracle Series**





# **ASAHI ULTIMATE bros3**



- Long hydrophilic coating maintains high maneuverability, allowing improved wire manipulation in heavy stenosed lesions.
- Fine shaping improves vessel selectivity and reduces the risk of false lumen expansion.




## **Miracle-Ultimate Series**



Penetrate with greater tip stiffness





## **ASAHI SION Family**



- Unique GW structure ; Double-coil structure
- 0.014" Coil type workhorse GW
- Good torque response "No whip" motion
- Tip Durability
- Full Hydrophilic coating
- Tip Load 0.7g





## **ASAHI SION Family**







### Composite Core of SION Family Double coil structure

- Smooth tracking of side branch vessel
  - : No-whip motion
- Retention of maneuverability after crossing severe tortuousity
  Enhanced tip durability and shape retention







### **Difference in Torque Whip**



TCTAP 2023



## **ASAHI SION**







## **ASAHI SION BLUE**







## **ASAHI SUHO 03**







## **Development Concept**





Composite core



Line-up addition to the SION series utilizing the advantages of both products





Polymer jacket





## **SION black Structure**

Total Length 190cm







## **Shaping of the Wire Tip**









Tip flexibility (gf)





## **ASAHI Gaia Family**



### Various models for different situations and/or lesions

| ASAHI Gaia First  | Diameter : 0.26mm (0.010") - 0.36mm (0.014")<br>Tip load : 1.7gf |
|-------------------|------------------------------------------------------------------|
| ASAHI Gaia Second | Diameter : 0.28mm (0.011") - 0.36mm (0.014")<br>Tip load : 3.5gf |
| ASAHI Gaia Third  | Diameter : 0.30mm (0.012") - 0.36mm (0.014")<br>Tip load : 4.5gf |

Coated with hydrophilic coating which enhances smooth controllability inside the micro catheter





### ASAHI Gaia Family Basic Structure



28th TCTAP 2023



### ASAHI Gaia concept Chronic Occlusion







## **ASAHI Gaia micro cone-tip**

The ball tip was made smaller to increase its penetration efficacy while maintaining tip flexibility.







## **Penetration efficacy**

**ASAHI** Gaia series : Maintains flexibility while keeping penetration efficacy



#### **Penetration efficacy**

Ease of entering the lesion

 $\rightarrow$  It is possible to calculate penetration efficacy with the outer diameter of the tip and the tip load.

 $\rightarrow$ The Gaia GW possesses more penetration efficacy with its smaller outer diameter tip and higher tip load.



Outer diameter of the tip

outer diameter of tip thinner





# ASAHI Gaia specification/structure/performance







### **Tip Structure** Composite core : Double Coil Structure

#### Composite core

Strong torque and tip flexibility are possible by implementing the ACTONE double coil structure.

Suppresses whip motion.











### **ASAHI Gaia Next Series**



| Product                         | Catalog No. | Diameter                             | Coating                                     | Usable<br>length     | Coil<br>Iength | Radiopaque<br>length | Tip shape        | Label<br>color | Clip<br>color |
|---------------------------------|-------------|--------------------------------------|---------------------------------------------|----------------------|----------------|----------------------|------------------|----------------|---------------|
| ASAHI Gaia <mark>Next 1</mark>  | AH14R019P   | 0.36 / 0.27mm<br>(0.014 / 0.011inch) | Hydrophilic coating<br>(SLIP-COAT®)<br>40cm | 190cm                | 15cm           | 15cm                 | 1mm<br>pre-shape |                |               |
| ASAHI Gaia Next 2               | AH14R020P   | 0.36 / 0.30mm<br>(0.014 / 0.012inch) | Hydrophilic coating<br>(SLIP-COAT®)<br>40cm | 19 <mark>0c</mark> m | 15cm           | 15cm                 | 1mm<br>pre-shape |                |               |
| ASAHI Gaia <mark>N</mark> ext 3 | AH14R021P   | 0.36 / 0.30mm<br>(0.014 / 0.012inch) | Hydrophilic coating<br>(SLIP-COAT®)<br>40cm | 19 <mark>0cm</mark>  | 15cm           | 15cm                 | 1mm<br>pre-shape |                |               |



**TCTAP 2023** 

## Gaia Tip ~ 1mm Pre-shape

The most distal 1mm (approx.) shaped during production, saving the operator the difficulty of manual shaping.

: Possible to increase the angle to create a more acute curve manually

: Possible to change re-shape the tip depending on procedural conditions

Pre shape 1mm – approx.45°

Retains shape memory during procedure







### ASAHI Gaia specification/structure/performance Comparison of Lubricity





### ASAHI Gaia specification/structure/performance Comparison of Support

Flexible shaft design makes it easier to follow through tortuous vessels and to operate without a delay in torque











### ASAHI CONQUEST Family PTCA Guide Wires







### **Conquest (Confianza) Pro 9 & 12**







### ASAHI CONQUEST Family Conquest Pro 8-20



- Tip load = 20.0 g
- Tip radiopacity = 17cm
- Tip outer diameter = 0.008 inch (0.20 mm)
- SLIP COAT coating over the spring coil
- PTFE coating over the shaft
- Finest and stiffest guidewire in the current series





### **ASAHI Gaia vs. Conquest Pro** Core thickness cause differences in penetrability



Conquest Pro core design image







### **ASAHI Gaia vs. Conquest Pro** Core thickness cause differences in penetrability







## **ASAHI RG3**



- Optimal wire strength, hydrophilic coating and 0.26 mm shaft provide superior inside-catheter pushability
- With the inner wall damage possibility reduced in tortuous vessels as well, the risk of complication is minimized





### Wire for Circumferential Technique for Reverse CART Technique

| Silicon Coating: 160cm |
|------------------------|
|                        |
| *                      |
|                        |
|                        |

1111



### **Structure of RG3 (RetroGrade300)**







### HI-TORQUE ADVANCE<sup>TM</sup> & ADVANCE LITE<sup>TM</sup>

**DURASTEEL<sup>™</sup>** high tensile strength core material provides durability and superb torque control

**Core-to-tip** design offers precise steering and tip control

SMOOTHGLIDE<sup>™</sup> technology on Proximal

Wire for smooth device interaction

**RESPONSEASE<sup>™</sup>** transitionless core grind provides excellent tracking and 1:1 torque response

## **Support Catheter for CTO**





## **Cosair Pro**



| Product              | Catalog No. | Outer diameter    |                   |                   | Inner d                                  | iameter               | Usable | Recommended           |
|----------------------|-------------|-------------------|-------------------|-------------------|------------------------------------------|-----------------------|--------|-----------------------|
|                      |             | Tip               | Distal shaft      | Proximal shaft    | Tip                                      | Shaft                 | length | GW                    |
| ASAHI<br>Corsair Pro | CSR135-26P  | 0.42mm<br>(1.3Fr) | 0.87mm<br>(2.6Fr) | 0.93mm<br>(2.8Fr) | 0.38mm 0.45mm<br>(0.015inch) (0.018inch) |                       | 135cm  | 0.36mm<br>(0.014inch) |
|                      | CSR150-26P  | 0.42mm<br>(1.3Fr) | 0.87mm<br>(2.6Fr) | 0.93mm<br>(2.8Fr) | 0.38mm<br>(0.015inch)                    | 0.45mm<br>(0.018inch) | 150cm  | 0.36mm<br>(0.014inch) |

- High visibility at the lesion part
- High tracking ability into the lesion
- Entire tip is visible under fluoroscope




# **Cosair Pro XS**



| Dreduct        | Catalog No | Outer diameter    |                   |                   | Inner diameter        |                       | Usable | Recommended           |
|----------------|------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|--------|-----------------------|
| Product        |            | Tip               | Distal shaft      | Proximal shaft    | Tip                   | Shaft                 | length | GW                    |
| ASAHI          | CSR135-215 | 0.44mm<br>(1.3Fr) | 0.71mm<br>(2.1Fr) | 0.95mm<br>(2.9Fr) | 0.38mm<br>(0.015inch) | 0.48mm<br>(0.019inch) | 135cm  | 0.36mm<br>(0.014inch) |
| Corsair Pro XS | CSR150-21S | 0.44mm<br>(1.3Fr) | 0.71mm<br>(2.1Fr) | 0.95mm<br>(2.9Fr) | 0.38mm<br>(0.015inch) | 0.48mm<br>(0.019inch) | 150cm  | 0.36mm<br>(0.014inch) |



#### 28th TCTAP 2023



## **ASAHI Corsair Microcatheter**



- Tip Fexibility : Tapered Soft Tip
- Pushability, Trackability, Support : SHINKA Shaft
- Lubricity : Hydrophilic Polymer Coating
- Visibility & Maneuverability : Tapered Soft tip and Tungsten Braiding
- Visibility & Maneuverability
- Rigidity and Pushability : Reinforced Tapered Shaft





# **ASAHI Corsair Microcatheter**



- Tapered Soft Polyurethane Tip
- 20cm Screw Head Structure
- Hydrophilic Polymer Coating
- PTFE Inner Layer













#### **PTFE** inner layer









# Dimensions of Corsair Catheter







# **Tip of Corsair Catheter**





A- Tip entry profile0.42mm (0.016")B- Shoulder O.D.0.87mm (0.034")





# **Rotation Resistance Reduction**



By adding the torque rotation, it reduces the friction within the vessel and enhances propulsion.





## **Tip Injury** Calcified Lesion / Stent Strut



#### Braided tip; visual exam and x-ray







# **Tip Injury**



#### To take turns CWR and CCWR To avoid too much rotation (>10)





## **ASAHI SASUKE**



|                 | Catalon   |                   | Outer Diameter                     |                   | Inner D               | lameter               | Ucable | Recommended<br>Guide Wire | Hydrophilic       |
|-----------------|-----------|-------------------|------------------------------------|-------------------|-----------------------|-----------------------|--------|---------------------------|-------------------|
| Product         | No.       | Tip               | Distal Shaft                       | Proximal<br>Shaft | Тір                   | Shaft                 | Length |                           | Coating<br>Length |
| ASAHI<br>SASUKE | SA145-33N | 0.50mm<br>(1.5Fr) | 0.84mm / 1.08mm<br>(2.5Fr / 3.3Fr) | 1.05mm<br>(3.2Fr) | 0.40mm<br>(0.016inch) | 0.43mm<br>(0.017inch) | 145cm  | 0.36mm<br>(0.014inch)     | 38cm              |

**TCTAP 2023** 



#### **CRUSADE** R



#### □Overview of the Catheter



|   |                     | Outer Diameter |                   |                   | Inner Diameter      |                     | Effective | Hydrophilic       | Compatible           |
|---|---------------------|----------------|-------------------|-------------------|---------------------|---------------------|-----------|-------------------|----------------------|
|   | Catalogue<br>Number | Tip Entry      | Distal<br>Shaft   | Proximal<br>Shaft | Distal<br>Shaft     | Proximal<br>Shaft   | Length    | Coating<br>Length | GW Outer<br>Diameter |
| • | CR1414140SD         | 1.4Fr(0.45mm)  | 2.9Fr<br>(0.96mm) | 3.2Fr(1.06mm)     | 0.0165"<br>(0.42mm) | 0.0177"<br>(0.45mm) | 140cm     | 27cm              | 0.014"<br>(0.36mm)   |





#### TERUMO's Progreat 2.2 Fr. <Super Selective>



Excellent Trackability Excellent Handling Enough Flow rate





#### **TERUMO'S Progreat** 2.0 Fr. <Super Selective>



Outer surface : Hydrophilic coating (Except 60mm from proximal end)

Catheter Size: 2.0 - 2.7Fr. (Distal-Proximal) Inner diameter: 0.49mm/0.019inch Length: 100cm,110cm,130cm, 150cm Max. Injection Pressure: 750psi Hydrophilic coating





# TERUMO's FineCross MC



28th TCTAP 2023



# **ASAHI Tornus**



- Braided stainless steel catheter for greater support and pushability
- Imm distal radiopaque marker for easy visualization of the distal tip
- Tapered threaded tip
- Excellent flexibility for tortuous anatomy







The metal catheter consists of 8 stainless steel ropes formed in a spiral str ucture.



-Combined 8 wires enable high torque performance.

• Spiral structure gives high penetration power by counter-clockwise rotation.

•Helical cut surface provides stronger anchor effects.

28th TCTAP 2023



#### ASAHI Tornus Structural Feature 2

The tapered structure with 150mm from the distal tip.















## ASAHI Tornus Magnified Torus Tips







## **ASAHI Tornus & Tornus 88Flex**







# **Tornus Pro**

#### Superior lesion crossability & flexible shaft













#### **Unpolished shaft**

Maximizes the screw effect to pass through tight lesions.



Tornus Pro(Unpolished)



Tornus (Polished)







#### Non-mirror finishing process on the tip

Deletion of mirror finishing process at the tip prevents fro m slipping and bouncing back at the tight lesions.



Tornus Pro: Without mirror finishing process



Tornus: With mirror finishing process





#### Crusade Microcatheter Double Lumen Catheter



Superior Shaft Maneuverability

Optimized configuration and materials enable superior shaft maneuverability. Distal shaft with slender flexible tip Flexible and strong proximal shaft

- Superior GW Movement
- A "double layer lumen" allows superior GW movement.
- Easy to Estimate the Length of Lesion

Two radiopaque markers on the RX lumen make it easy to estimate the length of the lesion.





Chronic Total Occlusion : Current Techniques





## **J-CTO SCORE SHEET**

|                                                         | Variables and definitions                                                                                                                      |                                                      |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Tapered                                                 | Blunt<br>Entry with any tapered tip<br>or dimple indicating<br>direction of true lumen is<br>categorized as "tapered".                         | Entry shape<br>Tapered (0)<br>Blunt (1)<br>poin      |
| Calcification                                           | Regardless of severity, 1 point<br>is assigned if any evident<br>calcification is detected within<br>the CTO segment.                          | Calcification Calcification Absence (0) Presence (1) |
| Bending>45degr                                          | CTO segment. Any tortuosity<br>separated from the CTO segment.                                                                                 | Bending>45<br>Absence (0)<br>Presence (1)            |
| Occlusion lengt                                         | h<br>Using good collateral images,<br>try to measure "true" distance<br>of occulusion, which tends to be<br>shorter than the first impression. | Occl.Length<br>□ <20mm (0<br>□ ≥20mm (1              |
| Re-try lesion<br>Is this Re-try (2 <sup>nd</sup> attemp | t) lesion ? (previously attempted but failed)                                                                                                  | Re-try lesion                                        |
| Category of difficulty                                  | (total point)<br>itermediate (1)                                                                                                               | Total points                                         |

## TO CODE C



Isehara, kyoto, et al., JACC Cardiovasc Interv. 2011; 4:213-21.



#### Asia Pacific CTO club new algorithm





Harding et al. JACC Cardiovasc Interv. 2017 Nov 13;10(21):2135-2143.



## **Algorithm for CTO crossing**



Harding et al. JACC Cardiovasc Interv. 2017 Nov 13;10(21):2135-2143.



# **Complexity of CTO**

|                                   | Level of PCI complexity |                 |  |  |
|-----------------------------------|-------------------------|-----------------|--|--|
|                                   | Easy                    | Complex         |  |  |
| Age of CTO                        | < 6 months              | > 12 months     |  |  |
| Occlusion length                  | < 20 mm                 | > 20 mm         |  |  |
| Calcification at CTO              | None/moderate           | Severe          |  |  |
| Occlusion Stump                   | tapered                 | Blunt or absent |  |  |
| Tortuosity at CTO                 | None/minimal            | Moderate/severe |  |  |
| Visibility of the distal vessel   | Good/excellent          | Poor            |  |  |
| Tortuosity proximal to CTO        | Minimal/moderate        | Severe          |  |  |
| Ostial location                   | Yes                     | No              |  |  |
| CTO at proximal/mid LCX           | No                      | Yes             |  |  |
| Expected guiding catheter support | Good                    | Poor            |  |  |
| Renal insufficiency               | Yes                     | No              |  |  |
| Previous attempts                 | No                      | Yes             |  |  |
| Expected patient tolerance        | Good                    | Poor            |  |  |





#### **Patient Selection and Predictors of Success Angiographic Lesion Morphology**



**Tapered Stump** 



**Functional occlusion** 



Stump absent







Pre or Bridging Post-branch occlusion collaterals absent

> **Favor Procedural Success**



Occlusion at side-branch

Bridging collaterals present

**Does Not Favor Procedural Success** 







## Where should we go? too many ways! confused







# **Roadmap to CTOs**









## **New Devices**

#### The CrossBoss<sup>™</sup> CTO Catheter Design



The Stingray<sup>™</sup> CTO Re-entry System Design









#### The Hybrid Algorithm for CTO PCI






## Antegrade Approach





## **Guidewire Operator Techniques**

#### DRILLING (controlled)

#### PENETRATION

SLIDING





## **Simple Technique**

#### Conventional technique Drilling strategy



When the tip of a wire encounters hard tissue, the wire is advanced and retracted repeatedly to find soft part of CTO and is pushed through it

#### New technique Penetrating strategy



Stiff wire is used from the start of the procedure and advanced in the planned direction through hard tissue

Ochiai M et al, Ital Heart J 2005;6:489-493





#### **Antegrade CTO Wiring Techniques**



### Uncontrolled drilling FAILURE!





#### Antegrade CTO Wiring Techniques Controlled Drilling (90 degree arc)







#### Antegrade CTO Wiring Techniques Penetration Techniques







#### Antegrade CTO Wiring Techniques Sliding Techniques







## **Simple Technique**

Conventional technique Drilling strategy Intermediate GW Not cross Standard GW Not cross Stiffer GW (0.014 inch) Not cross **Other stiffer GWs** Not cross Stiff Tapered GW

Stiff Tapered +/-Hydrophilic coating

Not cross

New technique

Penetrating strategy

Intermediate GW





## **Deflecting Tip Wire**





- Double-bend method. In addition to the first small curve (2 mm) made at the tip of a wire to find a true lumen, a larger shallow curve (4-5 mm) is added to cope with the curvature of the blood vessel. It is possible to use or extend the second curve at the tip of a microcatheter.
- When the parallel wire technique is used, it is possible to advance the second wire along a different channel by making the first or second curve different from that of the first wire





## **CTO Guidewires – Tip Shaping**







#### **Antegrade CTO Wiring Techniques**







## **Deflecting Tip Wire**

For penetrating the entry point

For reentering to the true lumen from the subintima





## **Creation of Re-entry**



Easy to make re-entry



**Difficult to make re-entry** 





## **Deflecting Tip Wire Case Example**







### Wire technique for locating another channel Tip Shape is Key !







## Single wire manipulation



## **Parallel wire technique**







## Wire Manipulation

Both hands easier than single hands manipulation







## Anchor balloon technique



Fujita S, Tamai H et al; Cather Cardiovasc Interv. 2003;59:482-8.





## **Anchor Technique**







## **Child in Mother Catheter Technique**



Lemos PA et al, EuroIntervention. 2013 May 20;9(1):148-56.





### **Child in Mother Catheter Technique**



28th TCTAP 2023



### **Concept of Parallel Wire Technique**







## Parallel Wire Technique







## **Parallel Wire Technique**







#### **Side Branch & Parallel Wire Technique**







#### Parallel Wire Technique Escalation of Wire

Miracle 3.0 gram

Miracle 3.0 gram/Conquest Pro

Conquest Pro/Conquest Pro 12 gram

Conquest Pro 12 gram/Coquest Pro 12 gram

Ochiai M et al, Ital Heart J 2005;6:489-493





## See-saw wiring technique

- Two support catheter at a time
- Roles of two wires be exchangeable
- Using parallel wire method with two support catheters
- Operator is able to move each of the two wires independently
- Introduces fluid (blood) into the otherwise dry occlusion site, triggering the hydrophilic mechanism, preventing wires from sticking to each other





**See-saw Wiring** Parallel Wire Method with Double Support Catheters







## See-saw Wiring



#### These guide wires can exchange their roles each other very easily





## **Side Branch Technique**







### **Double lumen catheter :** Crusade





#### Distal Tip



#### GW Inlet(OTW Lumen)



Figure 5. An illustration of the Crusade microcatheter.



#### Double lumen catheter Crusade



#### **Bifurcation lesion**

**Fielder XT wire** 





#### Parallel Wire Technique Double lumen catheter (Crusade)







## **STAR Technique**







## **Retrograde Approach**





# - *if anterograde approach is applied* -






# - *if retrograde approach is applied* -







## Procedure Sequence of Retrograde Approach

1st step : Connection channel crossing

Branch selection
 Wiring through target collateral

2<sup>nd</sup> Step :Micro-catheter delivery to distal CTO

3<sup>rd</sup> Step : Retrograde wiring in CTO lesion

1)Retrograde guide-wire crossing
 2)Kissing wire technique
 3)Reverse CART technique





### **Principles with collateral channels (CC)**

#### • 1. Septal CCs

Safer than epicardial CCs: try first

- Straight is better, tortuosity is more an issue
- You CAN wire invisible CCs

#### • 2. Epicardial CCs

- Larger size is important
- Tortuosity less an issue

 Lower threshold post CABG if course is outside the AV groove: unlikely tamponade in case of CC perforation





## Septal "surfing" technique

• Involves placing

1. workhorse wire in proximal CC

2. microcatheter (Corsair or FineCross),

- 3. "surf" with a Sion or Fielder FC for low resistance connection (no wedged tip injection)
- Help crossing even invisible CCs

   Recipient vessel angle not visible is much less an issue





## **Epicardial CC wiring**

Adding a second tiny bend more proximal may help

Sion has emerged as the wire of choice

Keep wire free and moving

Follow the path of least resistance





### **Classification Retrograde Procedures**

| Dilatation of CTO<br>Body | Direction of Wire Crossing  |              |
|---------------------------|-----------------------------|--------------|
|                           | Retrograde                  | Antegrade    |
| (+)                       | Reverse CART                | CART         |
| (-)                       | Retrograde Wire<br>Crossing | Kissing Wire |







Sumitsuji et al. JACC Intv 2011; 9:941–51

Ç CVRF

## Standardized Retrograde Procedure with Corsair









**TCTAP 2023** 















## **Concept of CART technique**

- Controlled Antegrade and Retrograde subintimal Tracking



 Make connection between antegrade and retrograde subintimal space utilizing behavior of subintimal dissection.
 Antegrade wire automatically gets into distal true lumen.











## **Concept of CART technique**

- Controlled Antegrade and Retrograde subintimal Tracking -



- Easy to get into CTO retrogressively
- Easy to navigate through CTO with relatively soft wire exchangeable
- Promising way to get a distal lumen (no subintimal dilatation outside CTO)
- Guarantee for getting true lumen at distal end of CTO despite any lesion morphology

Surmely JF. J Invasive Cardiol. 2006 Jul;18(7):334-8.





## **Retrograde Approach** Different strategies after crossing a guidewire

- Kissing guidewire
- Just landmark
- CART & reverse CART
- Retrograde true lumen tracking
- Retrograde proximal true lumen puncture
- Catching the retrograde guidewire





## **Concept of Kissing Wire Technique**





M Ochiai, WCC 2006



## **Femoral or Radial approach**





#### Femoral Or Radial Approach in Treatment of Coronary Chronic Total Occlusion

• Patients screened for FORT CTO (n=800)



Sevket Gorgulu et al, J Am Coll Cardiol Intv 2022;15:823-830



### Femoral Or Radial Approach in Treatment of Coronary Chronic Total Occlusion



CENTRAL ILLUSTRATION Main Findings of Femoral or Radial Approach in the Treatment of Coronary Chronic

CTO = chronic total occlusion; F = femoral; F/F = femoral/femoral; F/R = femoral/radial; FORT CTO = Femoral or Radial Approach in the Treatment of Coronary Chronic Total Occlusion; R = radial; R/R = radial/radial.



Sevket Gorgulu et al, J Am Coll Cardiol Intv 2022;15:823-830



## **IVUS assisted Procedure**





## **IVUS guided intralesional rewiring**

## Antegrade

• Retrograde

··· tomorrow

## Integration of IVUS and Angiogram

Use IVUS information for wire control

## Histology

- Intimal plaque
- Subintimal space





## **IVUS guided rewiring**

- Longitudinal position for optimal rewiring
- Direction of rewiring in IVUS
- Direction of rewiring in Angiogram
- Wiring
- Confirm wire position by IVUS





## Keys to Success of IVUS-guided Rewiring

- Correct reading IVUS information
  - Based on histology
- Integration IVUS and Angiogram
   Position and Direction
- Rewiring with Angiogram (Fluoroscopy)
- Confirm Wire Position by IVUS
- Patience





## **IVUS roles for Wire Cross**

#### ANTE-grade

- Identifying <u>entry point of CTO segment</u>
- Support wire penetration from false to true lumen

#### RETRO-grade

- Support for wire cross
- in <u>Retrograde Wire Cross</u>
- in <u>Reverse CART</u>
- in Reverse CART with Stenting

#### Review

• Wire tracking route





### **IVUS Guided Identification of the Entry**







### **Evaluate the Position of Retrograde Wire**







## **IVUS Guided Technique for Looking For the Entry**





### **Serial IVUS Findings: CTO PCI with DES**

40 CTOs systematically assessed Distal vessel enlargement (positive remodeling) was seen No variability with subintimal vs. luminal approach Late stent malapposition seen in 42.5% (throughout segments)







## IVUS Guided Technique for Looking For the True Lumen





#### How to IVUS Guide Wire Crossing Technique

- Advance the guidewire into the subintimal space
- Subintimal space is enlarged with a 1.5mm balloon catheter along with the guidewire
- IVUS catheter is advanced into the subintimal space
- Stiff guidewire is advanced into the true lumen
- Wire manipulation under IVUS imaging





### **OCT-guided technique** Comparison of IVUS and OCT specifications



IVUSResolution(axial)<br/>(lateral)100 - 150 mm<br/>150 - 300 mmFrame rate30 frames/sDynamic range40 - 60 dB



OCT 10 - 15 mm 25 - 40 mm 15 frames/s 30 frames/\$/2 lateral resolution) 90 - 110 dB





## **DECISION-CTO**

Optimal Medical Therapy With or Without Stenting For Coronary Chronic Total Occlusion

#### Seung-Jung Park, MD., PhD.

Heart Institute, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea





### Background

- Benefits of successful CTO-PCI include reduced angina frequency and improvements in quality of life, left ventricular ejection fraction, or survival.
- However, CTO-PCI can lead to procedure-related complications. In addition, the evidence for CTO-PCI was obtained from observational studies, most of which compared successful and failed CTO-PCI without a control group receiving optimal medical treatment.





## **DECISION CTO Trial**

#### Design

- DESIGN: a prospective, open-label, randomized trial
- OBJECTIVE: To compare the outcomes of OMT alone with PCI coupled with OMT in patients with CTO.
- PRINCIPAL INVESTIGATOR
   Seung-Jung Park, MD, PhD,
   Asan Medical Center, Seoul, Korea

Clinicaltrials.gov, Identifier: NCT01075051

Clinicaltrials.go





### **Participating Centers (N=19)**

| Country   | Site                                                          | Investigator       |
|-----------|---------------------------------------------------------------|--------------------|
| Korea     | Asn Medical center                                            | Seung-Jung Park    |
| India     | Ruby Hall Clinic                                              | Shirish Hiremath   |
| Korea     | Keimyung University Dongsan Medical Center                    | Seung Ho Hur       |
| Korea     | Korea University Guro Hospital                                | Seung Un Rha       |
| Indonesia | Medistra Hospital                                             | Teguh Santoso      |
| Korea     | The Catholic University of Korea, Daejeon ST. Mary's Hospital | Sung-Ho Her        |
| Korea     | Chungnam National University Hospital, Daejeon                | Si Wan Choi        |
| Korea     | Kangwon National University Hospital                          | Bong-Ki Lee        |
| Korea     | Soon Chun Hyang University Hospital Bucheon, Bucheon          | Nae-Hee Lee        |
| Korea     | Kangbuk Samsung Medical Center, Seoul                         | Jong-Young Lee     |
| Korea     | Gangneung Asan Hospital, Gangneung                            | Sang-Sig Cheong,   |
| Thailand  | King Chulalongkorn Memorial Hospital                          | Wasan Udayachalerm |
| Korea     | Dong-A University Hospital, Busan                             | Moo Hyun Kim       |
| Korea     | Chonnam National University Hospital, Gwangju                 | Young-Keun Ahn     |
| Korea     | Bundang Cha Medical Center, Bundang                           | Sang Wook Lim      |
| Korea     | Ulsan University Hospital, Ulsan                              | Sang-Gon Lee       |
| Korea     | Hangang Sacred Heart Hospital, Seoul                          | Min-Kyu Kim        |
| Korea     | Sam Anyang Hospital, Anyang                                   | II-Woo Suh         |
| Taiwan    | Shin Kong Hospital                                            | Jun Jack Cheng     |



## **Major Inclusion Criteria**

- Silent ischemia, stable angina, or ACS
- De novo CTO located in a proximal to mid epicardial coronary artery with a reference diameter of ≥2.5 mm
- CTO was defined as a coronary artery obstruction with TIMI flow grade 0 of at least three months' duration based on patient history.




# **Major Exclusion Criteria**

#### • CTO located in

- Distal coronary artery
- 3 different vessel CTOs in any location
- 2 proximal CTOs in separate coronary artery
- left main segment
- In-stent restenosis
- Graft vessel
- LVEF < 30%
- Severe comorbidity



### **Original Power Calculation**

### **Non-inferiority Design for Primary Endpoint**

- Assumed primary event rate: 17% at 3 years
- A noninferiority margin : event rate ratio 0.7
- A one-sided type I error rate : 0.025
- Power : 80%
- Dropout rate: 5%
- Assumed sample size: 1,284 patients





# **Study Procedures (1)**

- Patients who were assigned to PCIs underwent CTO-PCI using DES within 30 days after randomization using standard procedures.
- In cases of failed CTO-PCI, additional attempts were allowed within 30 days after the index procedure.
- The use of specialized devices or techniques, and the choice of drug-eluting stent type were left to the operator's discretion.





# **Study Procedures (2)**

- Revascularization for all significant non-CTO lesions within a vessel diameter of ≥2.5 mm for patients with multi-vessel coronary artery disease was recommended.
- Patients were prescribed guideline derived optimal medical treatment including aspirin, P2Y12 receptor inhibitors (>12months in case of PCI), beta-blocker, CCB, nitrate, ACEi/ARB, and statin.
- Blood pressure and diabetic control, smoking cessation, weight control, and regular exercise were recommended.





### **Premature Termination of Trial**

- Because enrollment was slower than anticipated, enrollment was stopped in September 2016 as recommended by the data and safety monitoring board by which time 834 patients had been enrolled.
- The sponsor and study leadership were unaware of study results at the time of this decision.





# **Statistical Analysis**

- All analyses were performed according to the intention-to-treat principle. Further sensitivity analyses were performed in the per-protocol and as-treated population.
- Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazard models, with robust standard errors that accounted for clustering effect of stratified randomization.
- Noninferiority test using the Z-test with 95% CI of difference in the 3year event rate.
- Survival curves were estimated using Cox model and the Kaplan-Meier method
- For quality of life analysis, we assumed the missing values were missing at random, and compared mean values of two groups using Student's t-test at specific time points.
- All P-values and CIs were two-sided. SAS software version 9.3 was used for all statistical analyses.

# **Primary End Point**

#### At 3 year, a composite of

- Death from any cause
- Myocardial infarction

Periprocedural MI: CK-MB > 5 times UNL

Spontaneous MI: any cardiac enzyme elevation

- Stroke
- Any repeat revascularization





### **Original Power Calculation**

### **Non-inferiority Design for Primary Endpoint**

- Assumed primary event rate: 17% at 3 years
- A noninferiority margin : event rate ratio 0.7
- A one-sided type I error rate : 0.025
- Power : 80%
- Dropout rate: 5%
- Assumed sample size: 1,284 patients





### **Premature Termination of Trial**

- Because enrollment was slower than anticipated, enrollment was stopped in September 2016 as recommended by the data and safety monitoring board by which time 834 patients had been enrolled.
- The sponsor and study leadership were unaware of study results at the time of this decision.





# **Study Flow**

**834** patients randomized from 2010.3.22 to 2016.10.10

19 withdrew consents

**398** allocated to OMT

310 treated with OMT
72 treated with PCI: 72
5 treated with OMT after failed PCI
11 had incomplete data

#### 417 allocated to PCI

346 treated with PCI
29 treated with OMT
36 treated with OMT after failed PCI
6 had incomplete data

1-year FU 348/357 (**97.5%**)

3-year FU 215/231 (**93.1%**)

5-year FU 87/99 (**87.9%**) 1-year FU 344/354 (**97.2%**)

3-year FU 218/238 (**91.6%**)

5-year FU 85/102 (**83.3%**)

CVF

### **Study Flow**





# **Statistical Analysis**

- All analyses were performed according to the intention-to-treat principle. Further sensitivity analyses were performed in the per-protocol and as-treated population.
- Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazard models, with robust standard errors that accounted for clustering effect of stratified randomization.
- Noninferiority test using the Z-test with 95% CI of difference in the 3year event rate.
- Survival curves were estimated using Cox model and the Kaplan-Meier method
- For quality of life analysis, we assumed the missing values were missing at random, and compared mean values of two groups using Student's t-test at specific time points.
- All P-values and CIs were two-sided. SAS software version 9.3 was used for all statistical analyses.

# **Baseline Characteristics**

**ITT Population** 

|                      | No-CTO PCI<br>(N=398) | CTO-PCI<br>(N=417) | P value |
|----------------------|-----------------------|--------------------|---------|
| Age (years)          | 62.9±9.9              | 62.2±10.2          | 0.32    |
| Male sex             | 319 (81.6%)           | 344 (83.3%)        | 0.59    |
| BMI, kg/m²           | 25.5±3.3              | 25.6±3.5           | 0.59    |
| Hypertension         | 238 (60.9%)           | 262 (63.4%)        | 0.50    |
| Diabetes mellitus    | 134 (34.3%)           | 132 (32.0%)        | 0.54    |
| Hypercholesterolemia | 217 (55.5%)           | 249 (60.3%)        | 0.19    |
| Current smoker       | 102 (26.1%)           | 125 (30.3%)        | 0.22    |
| Previous PCI         | 75 (19.2%)            | 64 (15.5%)         | 0.20    |
| Previous MI          | 34 (8.7%)             | 45 (10.9%)         | 0.35    |
| Previous CABG        | 5 (1.3%)              | 4 (1.0%)           | 0.93    |
| Renal dysfunction    | 5 (1.3%)              | 6 (1.5%)           | 0.99    |
| LVEF, %              | 57.6±9.1%             | 57.3±9.8%          | 0.68    |



# **Baseline Characteristics**

**ITT Population** 

|                        | No CTO-PCI<br>(N=398) | CTO-PCI<br>(N=417) | P value |
|------------------------|-----------------------|--------------------|---------|
| Clinical presentation  | (11-000)              | ()                 | 0.79    |
| Stable angina          | 290 (75.0%)           | 300 (72.7%)        |         |
| Unstable angina        | 76 (19.4%)            | 84 (20.3%)         |         |
| AMI                    | 22 (5.6%)             | 29 (7.0%)          |         |
| Location of CTO        |                       |                    | 0.67    |
| LAD                    | 163 (41.7%)           | 185 (44.8%)        |         |
| LCX                    | 42 (10.7%)            | 42 (10.2%)         |         |
| RCA                    | 186 (47.6%)           | 186 (45.0%)        |         |
| Multivessel disease    | 288 (73.6%)           | 302 (73.2%)        | 0.83    |
| SYNTAX score           | 20.8±9.5              | 20.8±9.2           | 0.99    |
| J-CTO score            | 2.2±1.2               | 2.1±1.2            | 0.16    |
| Number of total stents | 2.0±1.4               | 2.4±1.3            | <0.001  |
| Total stent length, mm | 53.6±39.4             | 71.2±40.5          | <0.001  |

# **Lesion and Procedural Characteristics**

**ITT Population** 

|                               | C                      | TO lesion               |        | Non-                    | CTO lesion               |       |  |
|-------------------------------|------------------------|-------------------------|--------|-------------------------|--------------------------|-------|--|
| Variable                      | MT strategy<br>(n=398) | PCI strategy<br>(n=417) | Ρ      | MT strategy<br>(n=398)  | PCI strategy<br>(n=417)  | Ρ     |  |
| Number of lesion <sup>b</sup> |                        |                         |        | 07 (25 0)               | 107 (26.2)               | 0.59  |  |
| 1                             | Nic                    | nt annlicable           |        | 97 (25.0)<br>127 (32 7) | 107 (20.2)<br>145 (35 5) |       |  |
|                               |                        | MT Strate               | gу     | PCI Strate              | egy P                    | value |  |
| CR (non-CTO vs.)              |                        | 302 (77.2%              | %)     | 325 (78.7               | %)                       | 0.67  |  |
| Residual SS (non-CTO          | vs.)                   | 3.7 ± 5.4               | ļ      | 4.0 ± 5.9               | 9                        | 0.42  |  |
| Total stent length, mm        | 53.6 ± 39.4            | 71.3 ± 40.5             | ≤0.001 | 44.2 ± 28.0             | 41.1 ± 25.9              | 0.26  |  |
| Stent diameter, mm            | 3.1 ± 0.4              | 3.1 ± 0.3               | 0.18   | $3.2 \pm 0.4$           | $3.2 \pm 0.4$            | 0.88  |  |
| Stents                        |                        |                         | 0.31   |                         |                          | 0.14  |  |
| Early generation DES          | 4 (5.5)                | 13 (3.7)                |        | 10 (5.2)                | 7 (3.3)                  |       |  |
| Newer generation DES          | 69 (94.5)              | 335 (96.3)              |        | 18 (94.8)               | 206 (96.7)               |       |  |
| IVUS use                      | 7 (9.6)                | 203 (58.3)              |        | 108 (56.5)              | 114 (53.8)               | 0.58  |  |
| Fluoroscopy time, minutes     | 37.2 ± 35.7            | 42.0 ± 34.0             | 0.09   |                         |                          |       |  |
| Total contrast amount, ml     | 337 ± 177              | 341 ± 157               | 0.78   |                         |                          |       |  |



# **CTO PCI Characteristics**

| Attempted PCI                               | N=459           |
|---------------------------------------------|-----------------|
| CTO PCI success                             | 418 (91.1%)     |
| Retrograde approach                         | 113 (24.6%)     |
| Lesion passaged wire                        |                 |
| Low penetration force wire                  | 117/418 (28.0%) |
| Intermediate to high penetration force wire | 301/418 (72.0%) |
| CTO technique                               |                 |
| Single wire technique only                  | 309/418 (73.9%) |
| Parallel wire technique                     | 72/418 (17.2%)  |
| IVUS-guided wiring                          | 25/418 (6.0%)   |
| CART technique                              | 55/418 (13.2%)  |
| Additional back-up support                  |                 |
| Corsair                                     | 91/418 (21.8%)  |
| Microcatheter other than Corsair            | 230/418 (55.0%) |
| Over-the-wire balloon                       | 6/418 (1.4%)    |



### Noninferiority Test for Primary End Point at 3-Year

**ITT** Population

Estimated 3-year Event Rate OMT: 19.6% PCI: 20.6%

**Prespecified non-inferiority margin: 0.7** 



Event Rate Ratio of 3-year MACE rate (PCI/OMT)





### **Primary End Point** ITT Population (Death, MI, Stroke, Any Revascularization)



28th TCTAP 2023

<sup>a</sup>Adjusted for age, BMI, hypercholesterolemia, previous stroke, renal dysfunction, atrial fibrillation, clinical presentation, location of CTO, number of diseased vessels, and stratifying covariates.



# **Clinical Endpoints**

|                                                                           | MT Strategy | PCI Strategy | Crude HR         | Р     | Adjusted HR*     | Р     |
|---------------------------------------------------------------------------|-------------|--------------|------------------|-------|------------------|-------|
|                                                                           | (n=398)     | (n=417)      | (95% CI)         | value | (95% CI)         | value |
| <b>Primary endpoint</b><br>Death, MI, stroke, or any<br>revascularization | 89 (22.4)   | 93 (20.3)    | 1.03 (0.77-1.37) | 0.86  | 1.10 (0.69-1.24) | 0.54  |
| Secondary endpoints                                                       |             |              |                  |       |                  |       |
| Death                                                                     | 21 (5.3)    | 15 (3.6)     | 0.70 (0.36-1.37) | 0.30  | 0.85 (0.42-1.72) | 0.65  |
| Cardiac cause                                                             | 14 (3.5)    | 8 (1.9)      | 0.56 (0.24-1.34) | 0.19  | 0.63 (0.24-1.63) | 0.34  |
| Noncardiac cause                                                          | 7 (1.8)     | 7 (1.7)      | 0.99 (0.35-2.82) | 0.99  | 1.16 (0.36-3.77) | 0.80  |
| Myocardial infarction                                                     | 34 (8.5)    | 47 (11.3)    | 1.31 (0.85-2.04) | 0.23  | 1.42 (0.90-2.23) | 0.13  |
| Periprocedural MI                                                         | 30 (7.5)    | 41 (9.8)     | 1.30 (0.81-2.07) | 0.29  | 1.36 (0.84-2.20) | 0.22  |
| Spontaneous MI                                                            | 7 (1.8)     | 7 (1.7)      | 0.83 (0.28-2.48) | 0.74  | 0.87 (0.27-2.77) | 0.82  |
| Stroke                                                                    | 10 (2.5)    | 6 (1.4)      | 0.57 (0.21-1.58) | 0.28  | 0.97 (0.32-2.96) | 0.96  |
| Any revascularization                                                     | 42 (10.6)   | 46 (11.0)    | 1.08 (0.71-1.65) | 0.71  | 1.09 (0.71-1.68) | 0.70  |
| CTO vessel                                                                | 30 (7.5)    | 33 (7.9)     | 1.01 (0.67-1.79) | 0.73  | 1.06 (0.64-1.76) | 0.81  |
| Non-CTO vessel                                                            | 23 (5.8)    | 29 (7.0)     | 1.24 (0.72-2.14) | 0.44  | 1.31 (0.74-2.32) | 0.36  |
| Death, MI, or stroke                                                      | 61 (15.3)   | 66 (15.8)    | 1.07 (0.75-1.51) | 0.72  | 1.26 (0.88-1.80) | 0.21  |
| Cardiac death, MI, stroke, or any revascularization                       | 82 (20.6)   | 86 (20.6)    | 1.02 (0.76-1.39) | 0.88  | 1.08 (0.80-1.48) | 0.61  |
| Death, spontaneous MI, stroke, or any revascularization                   | 69 (17.3)   | 64 (15.3)    | 0.91 (0.65-1.30) | 0.59  | 1.01 (0.71-1.42) | 0.98  |

<sup>\*</sup>Adjusted for age, BMI, hypercholesterolemia, previous stroke, renal dysfunction, atrial fibrillation, clinical presentation, location of CTO, number of diseased vessels, and stratifying covariates.

### **Primary End Point** (Death, MI, Stroke, Any Revascularization)

#### Per-protocol population

#### As-treated population



<sup>a</sup>Adjusted for age, BMI, hypercholesterolemia, previous stroke, renal dysfunction, atrial fibrillation, clinical presentation, location of CTO, number of diseased vessels, and stratifying covariates.

### **Death from any cause**



28th TCTAP 2023



### **Death from any cause**



28th TCTAP 2023



### **Myocardial Infarction**







### **Myocardial Infarction**











28th TCTAP 2023



### **Repeat Revascularization**



28<sup>th</sup> TCTAP 2023



### **Repeat Revascularization**



28th TCTAP 2023



### **QOL Measure Scores**

Within group changes from baseline to 1 month



28% ТСТАР 2023



### Between group differences over time

|                   | PCI strategy         | MT strategy          | Difference between PCI<br>and MT strategy (95% CI)* | P value |
|-------------------|----------------------|----------------------|-----------------------------------------------------|---------|
| SAQ physical lir  | mitation             |                      |                                                     |         |
| 1 mo              | 90.00 ± 15.66        | 88.38 ± 17.11        | -3.354 (-5.6051.104)                                | 0.004   |
| 6 mo              | 92.22 <u>+</u> 13.61 | 91.80 <u>+</u> 14.32 | -1.813 (-4.089 – 0.464)                             | 0.118   |
| 12 mo             | 93.06 ± 11.96        | 91.77 ± 15.12        | -2.309 (-4.710 - 0.092)                             | 0.059   |
| 24 mo             | 94.84 ± 12.72        | 93.69 ± 12.74        | -1.920 (-4.301 - 0.462)                             | 0.114   |
| 36 mo             | 94.52 ± 12.86        | 93.54 ± 14.98        | -1.813 (-4.827 - 1.201)                             | 0.237   |
| SAQ angina free   | luency               |                      |                                                     |         |
| 1 mo              | 94.63 ± 10.54        | 93.31 ± 13.78        | -2.635 (-4.604 - 0.665)                             | 0.009   |
| 6 mo              | 96.00 ± 10.13        | 95.44 <u>+</u> 9.98  | -1.037 (-2.911 – 0.837)                             | 0.277   |
| 12 mo             | 94.55 ± 11.18        | 95.33 ± 10.19        | -0.154 (-2.163 - 1.855)                             | 0.880   |
| 24 mo             | 97.31 ± 7.13         | 97.18 ± 7.65         | -0.427 (-1.978 - 1.125)                             | 0.589   |
| 36 mo             | 98.21 ± 5.32         | 97.38 ± 7.20         | -0.981 (-2.480 - 0.518)                             | 0.199   |
| SAQ quality of li | ife                  |                      |                                                     |         |
| 1 mo              | 66.16 ± 19.87        | 64.26 ± 19.65        | -3.075 (-6.135 – -0.016)                            | 0.049   |
| 6 mo              | 72.08 <u>+</u> 17.54 | 69.74 <u>+</u> 17.48 | -3.336 (-6.4440.227)                                | 0.036   |
| 12 mo             | 72.19 ± 19.06        | 71.89 ± 16.6         | -1.458 (-4.745 - 1.829)                             | 0.384   |
| 24 mo             | 77.37 ± 17.43        | 75.91 ± 17.77        | -2.136 (-5.738 - 1.465)                             | 0.244   |
| 36 mo             | 78.26 ± 17.39        | 77.53 ± 16.69        | -1.213 (5.004 - 2.577)                              | 0.529   |

\*The difference between the PCI and MT strategy groups was adjusted for baseline values. Negative values indicate better outcomes with PCI strategy.



### Substantial Improvement (%) of Angina over Time

Increase from baseline score of 10 points or more



28th TCTAP 2023



### Subgroup Analysis

| Subgroup                | OMT<br>no. of patients with | PCI<br>n event/total no. (%) | Hazard ratio (95% Cl)                          | p value for<br>Interaction |
|-------------------------|-----------------------------|------------------------------|------------------------------------------------|----------------------------|
| Overall                 | 81/387 (20.9)               | 86/411 (20.9)                | ⊢⊣⊣ 0.95 (0.70−1.28)                           |                            |
| Age                     |                             |                              |                                                | 0.51                       |
| ≥ 65 y                  | 43/172 (25.0)               | 48/174 (27.6)                | ⊢⊢⊣ 0.85 (0.56−1.29)                           |                            |
| < 65 y                  | 38/215 (17.7)               | 38/237 (16.0)                | ⊢−− 1.05 (0.67−1.64)                           |                            |
| Sex                     |                             |                              |                                                | 0.65                       |
| Male                    | 63/315 (20.0)               | 71/342 (20.8)                | ⊢⊣ 0.91 (0.65−1.28)                            |                            |
| Female                  | 18/72 (25.0)                | 15/69 (21.7)                 | ⊢−−−−−−−−−−1.07 (0.54−2.13)                    |                            |
| Diabetes                |                             |                              |                                                | 0.45                       |
| Yes                     | 29/133 (21.8)               | 32/132 (24.2)                | └───────────────────────────────               |                            |
| No                      | 52/254 (20.5)               | 54/279 (19.4)                | ⊢−− 1.03 (0.70−1.50)                           |                            |
| Previous myocardial ir  | nfarction                   |                              |                                                | 0.77                       |
| Yes                     | 6/34 (17.6)                 | 9/45 (20.0)                  | ⊢−−−−0.83 (0.30−2.34)                          |                            |
| No                      | 75/353 (21.2)               | 77/366 (21.0)                | ⊢⊣ 0.96 (0.70−1.32)                            |                            |
| Acute coronary syndro   | ome                         |                              |                                                | 0.18                       |
| Yes                     | 29/97 (29.9)                | 26/113 (23.0)                | H <mark>−−</mark> −1164 (0.88−3.05)            |                            |
| No                      | 52/290 (17.9)               | 60/298 (20.1)                | ⊢ <mark>–</mark> ⊣ 0.82 (0.57−1.19)            |                            |
| Typical chest pain      |                             |                              |                                                | 0.56                       |
| Yes                     | 65/278 (23.4)               | 64/311 (20.6)                | ⊢⊣ 0.91 (0.64−1.29)                            |                            |
| No                      | 16/109 (14.7)               | 22/100 (22.0)                | <mark>⊢ <mark>–</mark> 1,63 (0.85−3.11)</mark> |                            |
| Ejection fraction       |                             |                              |                                                | 0.44                       |
| ≥ 50%                   | 60/321 (18.7)               | 63/332 (19.0)                | ⊢ <mark>–</mark> ⊣ 0.91 (0.64−1.30)            |                            |
| < 50%                   | 21/66 (31.8)                | 23/79 (29.1)                 | ⊢−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−         |                            |
| Multi-vessel disease    |                             |                              |                                                | 0.39                       |
| Yes                     | 69/286 (24.1)               | 69/301 (22.9)                | ⊢⊢ 1.01 (0.72−1.41)                            |                            |
| No                      | 12/101 (11.9)               | 17/110 (15.5)                | ⊢−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−         |                            |
| CTO located in the left | t anterior descending a     | artery                       |                                                | 0.98                       |
| Yes                     | 29/161 (18.0)               | 34/183 (18.6)                | → 0.93 (0.57−1.53)                             |                            |
| No                      | 52/226 (23.0)               | 52/228 (22.8)                | ⊢ <mark>⊢</mark> ⊣ 0.94 (0.64−1.38)            |                            |
|                         |                             |                              |                                                |                            |
|                         |                             |                              |                                                |                            |
|                         |                             |                              | iter PCI Better                                |                            |

CVRF

# **Per Protocol Analysis**





### **Noninferiority Test for Primary End Point at 3-Year**

**Per-Protocol Population** 



Event Rate Ratio of 3-year MACE rate (PCI/OMT)

Lower 1-sided 97.5% CI





### **Primary End Point** (Death, MI, Stroke, Any Repeat Revascularization)



28th TCTAP 2023



# **As Treated Analysis**





### Noninferiority Test for Primary End Point at 3-Year

**As-Treated Population** 



Lower 1-sided 97.5% CI




### **Primary End Point** (Death, MI, Stroke, Any Repeat Revascularization)



28th TCTAP 2023



#### **Primary End Point** (Death, MI, Stroke, Any Repeat Revascularization)



TCTAP 2023



# Intention-to-Treat Analysis

|                                                                 | CTO-PCI<br>(n=417) | No CTO-PCI<br>(n=398) | Crude HR<br>(95% CI) | P value |
|-----------------------------------------------------------------|--------------------|-----------------------|----------------------|---------|
| Primary endpoint<br>Death, MI, stroke, or any revascularization | 93 (22.3)          | 89 (22.4)*            | 1.03 (0.77-1.37)     | 0.86    |
| Secondary endpoints                                             |                    |                       |                      |         |
| Death                                                           | 15 (3.6)           | 21 (5.3)              | 0.70 (0.36-1.37)     | 0.30    |
| Cardiac cause                                                   | 8 (1.9)            | 14 (3.5)              | 0.56 (0.24-1.34)     | 0.19    |
| Noncardiac cause                                                | 7 (1.7)            | 7 (1.8)               | 0.99 (0.35-2.82)     | 0.99    |
| Myocardial infarction                                           | 47 (11.3)          | 34 (8.5)              | 1.39 (0.90-2.15)     | 0.14    |
| Periprocedural MI                                               | 41 (9.8)           | 30 (7.5)              | 1.37 (0.816-2.18)    | 0.19    |
| Spontaneous MI                                                  | 7 (1.7)            | 7 (1.8)               | 0.88 (0.30-2.57)     | 0.82    |
| Stroke                                                          | 6 (1.4)            | 10 (2.5)              | 0.61 (0.23-1.65)     | 0.33    |
| Any revascularization                                           | 46 (11.0)          | 42 (10.6)             | 1.14 (0.75-1.73)     | 0.55    |
| CTO vessel                                                      | 33 (7.9)           | 30 (7.5)              | 1.13 (0.69-1.84)     | 0.63    |
| Non-CTO vessel                                                  | 29 (7.0)           | 23 (5.8)              | 1.34 (0.77-2.31)     | 0.30    |
| Death, MI, or stroke                                            | 66 (15.8)          | 61 (15.3)             | 1.07 (0.75-1.51)     | 0.72    |
| Cardiac death, MI, stroke, or any revascularization             | 86 (20.6)          | 82 (20.6)             | 1.02 (0.76-1.39)     | 0.88    |
| Death, spontaneous MI, stroke, or any revascularization         | 64 (15.3)          | 69 (17.3)             | 0.91 (0.65-1.30)     | 0.59    |



# The Assigned and Actually Treated Strategies





## **Primary endpoint analyses** Stratified by the assigned and actual strategy



TCTAP 2023

## The Assigned and Actually Treated Strategies

|            | Estimated 3 Year Event Rate<br>(Standard Error) | Adjusted HR<br>(95% CI) | P Value |
|------------|-------------------------------------------------|-------------------------|---------|
| PCI to PCI | 19.0% (2.1)                                     | 0.91 (0.61-1.34)        | 0.62    |
| PCI to OMT | 29.3% (5.8)                                     | 1.37 (0.80-2.34)        | 0.25    |
| OMT to PCI | 9.5% (4.2)                                      | 0.45 (0.19-1.09)        | 0.077   |
| OMT to OMT | 21.9% (3.3)                                     | 1 (Reference)           |         |





## Conclusion

- The DECISION-CTO trial is the first randomized clinical trial to compare the strategy of OMT alone with that of PCI in patients with coronary CTO.
- The ITT analysis showed that OMT as an initial strategy was non-inferior to PCI with respect to the primary endpoint of the composite of death, MI, stroke, or any revascularization at 3 years.
- The measures of health-related quality of life in the OMT and the PCI groups were comparable throughout the follow-up period





## Conclusion

- However, SAQ angina frequency subscale is much better in terms of improvement more than 10 points in PCI arm, which suggest PCI strategy is more beneficial effect in angina control in CTO patients.
- However, despite statistical no difference, we did not provide firm conclusion for role of medical treatment strategy in the CTO patients due to early termination and lower enrolment than anticipated.
- There is a signal for role of medical treatment, but further randomized clinical trials are necessary.



