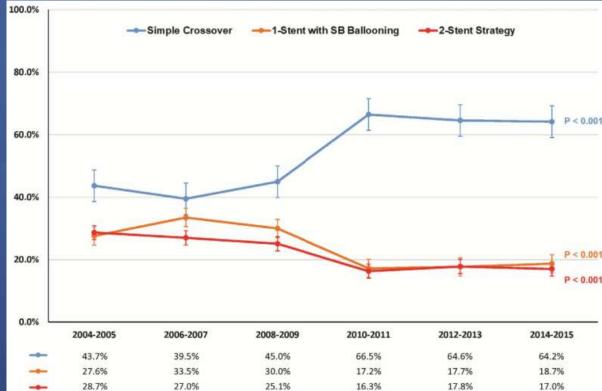
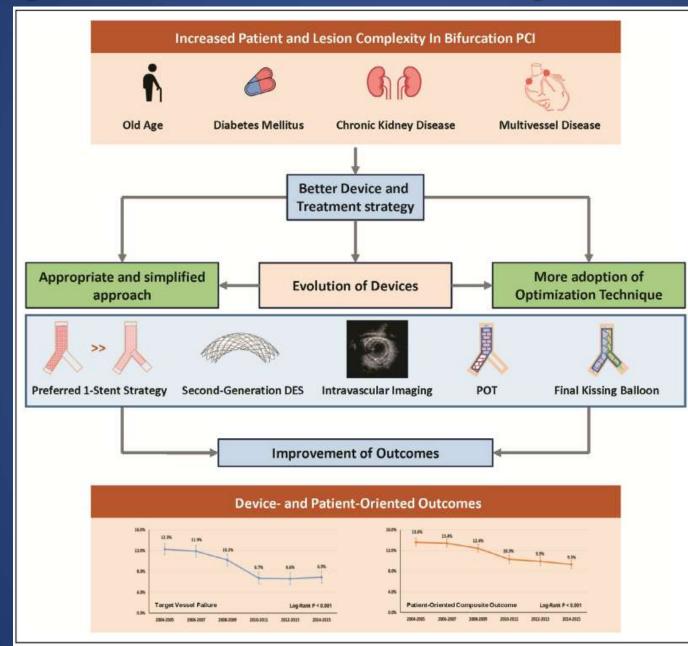

Non-LM bifurcation



Ten-year trends in coronary bifurcation PCI

Changes in Lesion Characteristics



Changes in Treatment Strategy trends

Ten-year trends in coronary bifurcation PCI

Lee et al, J Am Heart Assoc. 2021;10:e021632.

LM vs. Non-LM Bifurcation

Procedural Characteristics

	Left Mai	n Bifurcation (N=9	35)	Non-Left Main Bifurcation (N=1713)			
Variables	1-Stent (N=682)	2-Stent (N=253)	P Value	1-Stent (N=1512)	2-Stent (N=201)	<i>P</i> Value	
Treatment strategy			<0.001			<0.001	
1-stent without side branch ballooning	489 (71.7%)	0 (0%)		1196 (79.1%)	0 (0%)		
1-stent with side branch ballooning	193 (28.3%)	0 (0%)		316 (20.9%)	0 (0%)		
Crush	0 (0%)	142 (56.1%)		0 (0%)	102 (50.7%)		
T-stenting or TAP	0 (0%)	60 (23.7%)		0 (0%)	65 (32.3%)		
Culottes	0 (0%)	16 (6.3%)		0 (0%)	15 (7.5%)		
Kissing or V stenting	0 (0%)	26 (10.3%)		0 (0%)	15 (7.5%)		
Others	0 (0%)	9 (3.6%)		0 (0%)	4 (2.0%)		
No. of used stent	1.7±0.9	2.6±1.0	<0.001	1.6±0.9	2.3±1.1	<0.001	
Stent type			0.161			0.011	
Everolimus-eluting stents	367 (53.8%)	131 (51.8%)					
Zotarolimus-eluting stents	164 (24.0%)	69 (27.3%)					
Biolimus-eluting stent	132 (19.4%)	40 (15.8%)		317 (21.0%)	25 (12.4%)		
Mixed or other stents	19 (2.8%)	13 (5.1%)		81 (5.4%)	9 (4.5%)		
IVUS guidance	427 (62.6%)	172 (68.0%)	0.148	389 (25.7%)	75 (37.3%)	0.001	
Final kissing ballooning	163 (23.9%)	233 (92.1%)	<0.001	228 (15.1%)	165 (82.1%)	<0.001	
POT(proximal optimization technique)	237 (34.8%)	56 (22.1%)	<0.001	394 (26.1%)	52 (25.9%)	>0.999	
Re-POT	25 (3.7%)	48 (19.0%)	<0.001	23 (1.5%)	27 (13.4%)	<0.001	
NC balloon use	162 (23.8%)	87 (34.4%)	0.001	228 (15.1%)	57 (28.4%)	<0.001	

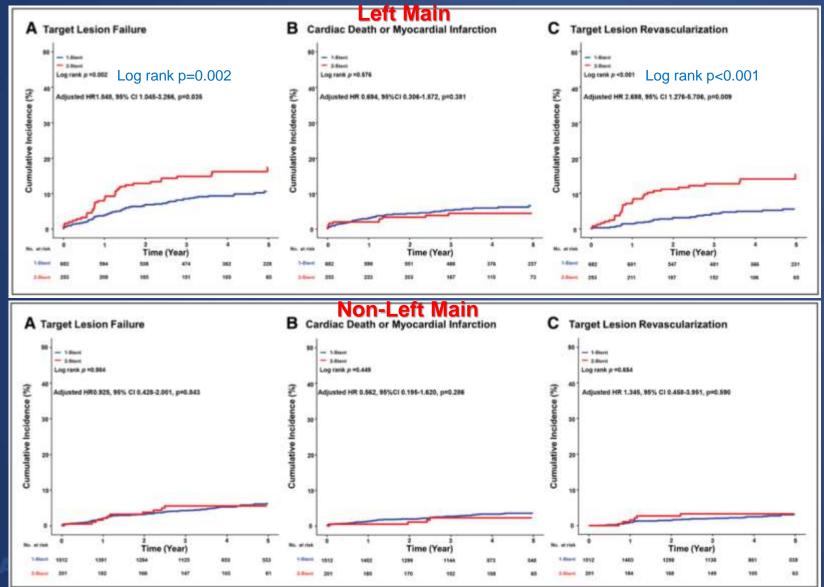
GIAP ZUZ.

Choi et al, Circ Cardiovasc Interv. 2020;13:e008543.

LM vs. Non-LM Bifurcation

Cumulative Incidence of Adverse Events at 5 Years

	All P	atients (N=2648	3)	Left Main Bifurcation (N=935)			Non-Left Main Bifurcation (N=1713)		
	1-Stent (N=2194)	2-Stent (N=454)	P Value	1-Stent (N=682)	2-Stent (N=253)	P Value	1-Stent (N=1512)	2-Stent (N=201)	P Value
TLF*	137 (7.6%)	47 (12.1%)	<0.001	60 (10.6%)	37 (17. <mark>4%</mark>)	0.006	77 (6.3%)	10 (5.6%)	0.950
Cardiac death or MI	84 (4.5%)	14 (3.5%)	0.536	38 (6.6%)	10 (4.4%)	0.355	46 (3.6%)	4 (2.3%)	0.453
All-cause death	94 (5.1%)	20 (5.4%)	0.814	40 (7.1%)	11 (5.2%)	0.418	54 (4.2%)	9 (5.5%)	0.505
Cardiac death	55 (3.0%)	8 (2.0%)	0.416	25 (4.5%)	4 (1.8%)	0.119	30 (2.3%)	4 (2.2%)	0.927
MI	33 (1.7%)	7 (1.7%)	0.911	16 (2.7%)	6 (2.7%)	0.964	17 (1.3%)	1 (0.6%)	0.423
TLR	67 (3.9%)	38 (9.9%)	<0.001	30 (5.5%)	32 (15.3%)	<0.001	37 (3.2%)	6 (3.3%)	0.597


Values are n (%). Cumulative incidence of events was presented as Kaplan-Meier estimates. MI indicates myocardial infarction; TLF; target lesion failure; and TLR; target lesion revascularization.

*TLF was defined as a composite of cardiac death, MI, and TLR.

LM vs. Non-LM Bifurcation

Comparison of 5-yr clinical outcomes between 1-stent and 2-stent strategy

Choi et al, Circ Cardiovasc Interv. 2020;13:e008543

First Author/Trial/Ref. (#)	Interventions	LMCA	LAD	LCX	RCA	True Bifurcation
Pan et al. (8)	Pro vs. T ste	3 (6); 2 (5)	33 (71); 33 (75)	8 (17); 6 (13)	3 (6); 3 (7)	47 (100); 44 (100)
CACTUS (9)	Crush vs. Pro	0 (0); 0 (0)	131 (74); 121 (70)	34 (19); 43 (25)	12 (7); 9 (5)	328 (94) OA
Colombo et al. (10)	T ste vs. Pro	0 (0); 0 (0)	64 (74) OA	15 (17) OA	7 (8) OA	63 (100); 22 (100)
Lin et al. (3)*	Pro vs. DK	0 (0); 0 (0)	45 (83); 43 (80)	5 (9); 6 (11)	4 (7); 5 (9)	54 (100); 54 (100)
BBC ONE (4)*	Pro vs. Crush	0 (0); 0 (0)	201 (81); 209 (84)	35 (14); 28 (11)	9 (4); 12 (5)	202 (81); 209 (84)
EBC TWO (11)	Pro vs. Cul	<mark>0 (0); 0 (0</mark>)	80 (78); 75 (77)	16 (15); 18 (19)	6 (6); 4 (4)	103 (100); 97 (100)
DK-Crush V (6)	Pro vs. DK	242 (100); 240 (100)	0 (0); 0 (0)	0 (0); 0 (0)	0 (0); 0 (0)	242 (100); 240 (100)
Zheng et al. (12)	Crush vs. Cul	13 (9); 19 (13)	96 (64); 102 (68)	35 (23); 26 (17)	6 (4); 3 (2)	150 (100); 150 (100)
DK-Crush III (13)	DK vs. Cul	210 (100); 209 (100)	0 (0); 0 (0)	0 (0); 0 (0)	0 (0); 0 (0)	210 (100); 209 (100)
NSTS (14)	Crush vs. Cul	20 (10); 21 (10)	132 (63); 142 (66)	42 (20); 43 (20)	15 (7); 9 (4)	153 (73); 177 (82)
DK-Crush II (15)	DK vs. Pro	32 (17); 29 (16)	112 (61); 107 (59)	23 (12); 30 (16)	17 (9); 16 (9)	183 (100); 183 (100)
NBS (16)*	Pro vs. Crush	(2) OA	(73) OA	(18) OA	(7) OA	ND
BBK I (17)	Pro vs. T ste	0 (0); <mark>0 (0</mark>)	76 (75); 74 (73)	16 (16); 21 (21)	9 (9); 6 (6)	69 (69); 69 (69)
PERFECT (18)	Crush vs. Pro	0 (0); 0 (0)	200 (94); 190 (92)	10 (5); 15 (7)	3 (1); 1 (0)	194 (91); 169 (82)
NBBSIV (19)*	Pro vs. Cul	(3); (1)	(74); (77)	(17); (18)	(6); (4)	(100); (100)
BBK II (20)	Cul vs. TAP	28 (19); 23 (15)	82 (55); 83 (55)	36 (24); 38 (25)	4 (3); 6 (4)	147 (98); 143 (95)
Zhang et al. (21)	Pro vs. Cul	16 (31); 14 (27)	33(63); 34 (65)	3 (6); 2 (4)	0 (0); 2 (4)	52 (100); 52 (100)
Ruiz et al. (22)	Pro vs. T ste	0 (0); 0 (0)	24 (71); 26 (72)	9 (26); 6 (17)	1 (3); 4 (11)	27 (79); 33 (92)
DK-Crush I (23)	Crush vs. DK	(16); (15)	(62); (66)	(14); (11)	(8); (8)	(100); (100)
Ye et al. 2010 (24)	Pro vs. DK	ND	ND	ND	ND	26 (100) 25 (100)
Ye et al. 2012 (25)	Pro vs. DK	0 (0) 0 (0)	(78) OA	(15) OA	(7) OA	37 (100) 38 (100)

Values are n, n (%), or mean ± SD. Data are presented for each arm. *When arm-specific data was not available, it is reported as Overall (OA).

Cul = Culotte; DK = DK-Crush; LAD = left anterior descending artery; LCX = left circumflex artery; LMCA = left main coronary artery; NBBSIV = Nordic-Baltic Bifurcation Study IV; NBS = Nordic Bifurcation Study; ND = not declared; NSTS = Nordic Stent Technique Strategy; Pro = Provisional stenting; RCA = right coronary artery; T ste = T stenting; TAP = T and protrusion.

The CACTUS study ; Crush vs. Provisional side-branch stenting

	Crush Group	Provisional-Stentin Group	g
	(n=177)	(n=173)	Р
30-day MACE (days 0–30)			
Q-wave MI	3 (1.7)	2 (1.1)	1.00
Non-Q-wave MI	15 (8.5)	12 (6.9)	0.69
TLR	3 (1.7)	1 (0.5)	0.63
TVR (including TLR)	3 (1.7)	1 (0.5)	0.63
Death	0	0	
6-month MACE (days 31–180)			
MI	1 (0.5)	1 (0.5)	1.00
TLR	10 (5.6)	10 (5.8)	1.00
TVR (including TLR)	11 (6.2)	12 (6.8)	0.83
Death	0	1* (0.5)	0.49
Cumulative MACE (days 0–1	80)		
MI	19 (10.7)	15 (8.6)	0.59
TLR	13 (7.3)	11 (6.3)	0.83
TVR (including TLR)	14 (7.9)	13 (7.5)	1.00
Death	0	1* (0.5)	0.49

TLR indicates target-lesion revascularization; TVR, target-vessel revascularization. Values are mean ± SD or n (%).

*Noncardiac death (ischemic stroke confirmed by autopsy).

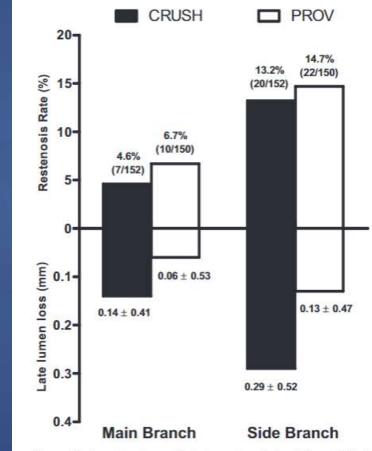
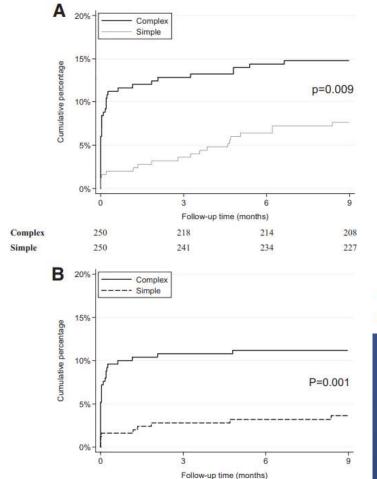


Figure. Restenosis rates and late lumen loss in the MB and SB of the crush stenting (CRUSH) and provisional T-stenting (PROV) groups.


1023 TCTAP 2023

Colombo A et al, Circulation. 2009 Jan 6;119(1):71-8

BBC study ; Simple(Provisional) vs. Complex(Crush, Culotte)

Table 3. Trial End Points

	Simple	Complex	Hazard Ratio (95% CI)	P
Primary end point	n=250	n=250		
Death, MI, or target-vessel failure at 9 mo (%)	20 (8.0)	38 (15.2)	2.02 (1.17-3.47)	0.009
Secondary end points				
Death (%)	1 (0.4)	2 (0.8)		
Periprocedural (inpatient)	0	1		
Subsequent	1	1		
MI (%)	9 (3.6)	28 (11.2)	3.24 (1.53-6.86)	0.001
Periprocedural (inpatient)	4	17		
Subsequent	5	11		
CK data availability after PCI (%)	233 (94)	231 (93)		
Troponin availability after PCI (%)	233 (94)	222 (90)		
CK or troponin after PCI (%)	244 (98)	240 (97)		
Target-vessel failure (%)	14 (5.6)	18 (7.2)	1.32 (0.66-2.66)	0.43
Stent thrombosis (ARC definite)	1	5		
Restenosis of main vessel only	6	4		
Restenosis of side branch only	6	3		
Restenosis of both	1	6		
Treated with CABG	1	9		
Treated with re-PCI	13	8		
Repeat angiography (%)	32 (13)	43 (17)	1.44 (0.91-2.27)	0.12
In-hospital MACE (%)	5 (2.0)	20 (8.0)	4.00 (1.53-10.49)*	0.002
Death	0	1		
MI	5	18		
CABG	0	3		
Procedural end points	n=249	n=248		
Success in main vessel (%)†	244 (98)	242 (97)		
Success in side branch (%)‡	236 (94)	234 (94)		
Overall procedural success (%)§	235 (94)	234 (94)		
Stent implantation in main vessel (%)	245 (98)	239 (96)		
Stent implantation in side branch (%)	7 (3)	225 (91)		
Procedure time, min, mean (SE)	57 (1.6)	78 (1.9)		< 0.001
Fluoroscopy time, min, mean (SE)	15 (0.7)	22 (0.8)		< 0.001
Diamentor, cGy - cm ² , mean (SE)	6140 (300)	7900 (350)		< 0.001
No. of guidewires used, mean (SE)	2.2 (0.1)	3.1 (0.1)		< 0.001
No. of balloons used, mean (SE)	2.3 (0.1)	4.0 (0.1)		< 0.001
No. of stents used, mean (SE)	1.2 (0.0)	2.2 (0.1)		< 0.001

223

243

222

242

216

237

Complex

Simple

250

250

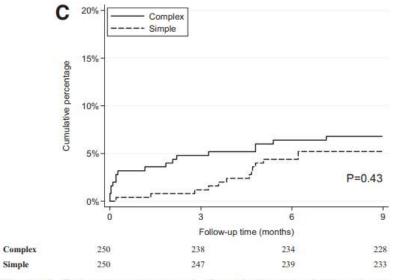


Figure 2. Outcome measures. A, Cumulative risk of primary outcome; B, cumulative risk of myocardial infarction; and C, cumulative risk of target-vessel failure.

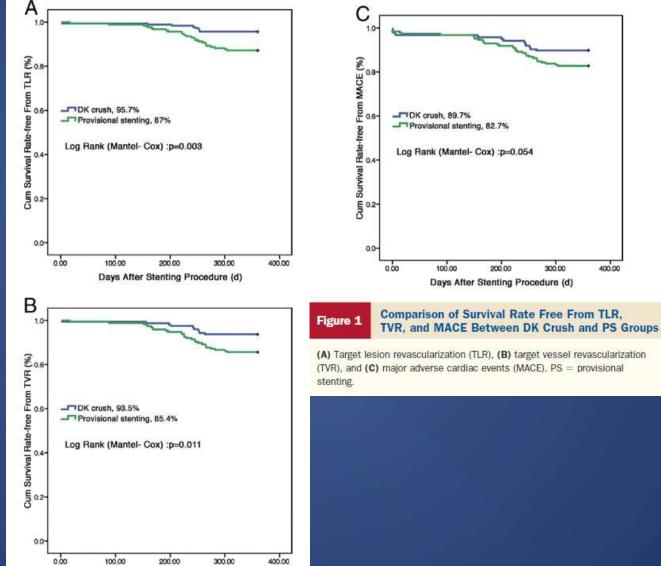
Simple

Cl indicates confidence interval; MI, myocardial infarction; CABG, coronary artery bypass graft; and ARC, Academic Research Consortium.

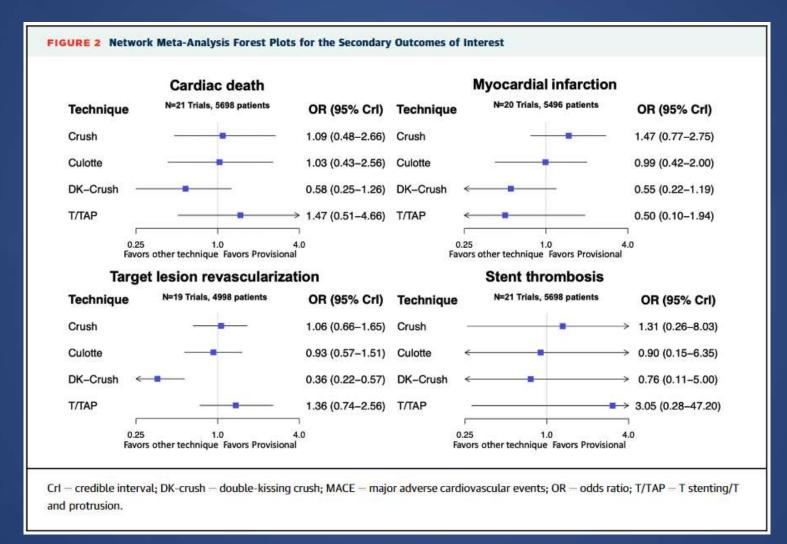
*Risk ratio

†Defined as TIMI 3 flow and <30% residual stenosis. ±Defined as TIMI 3 flow.

SDefined as both of the above

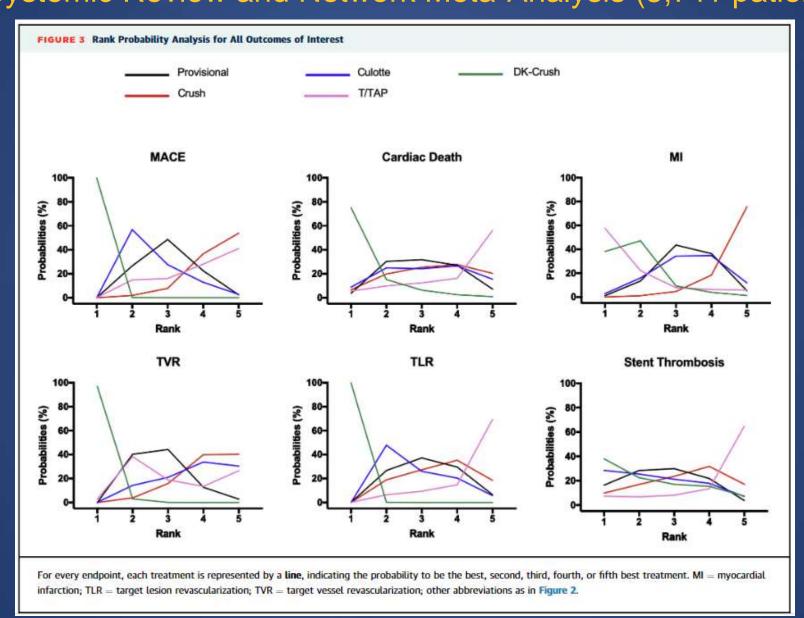

DKCRUSH-II

; Double kissing crush vs. Provisional stenting

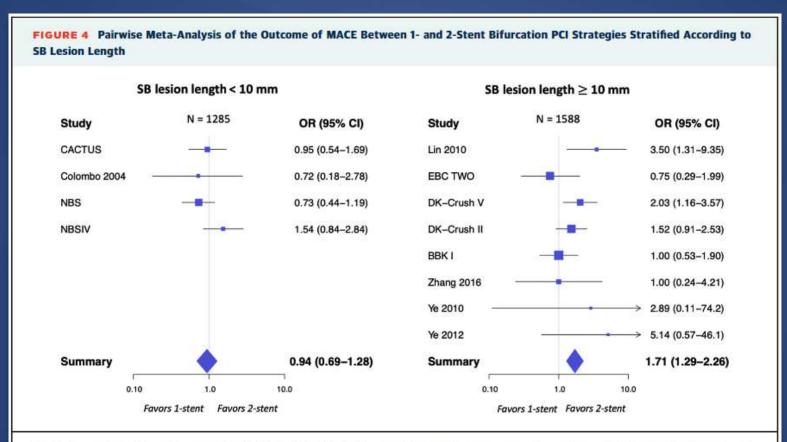

Days After Stenting Procedure (d)

	DK Group $(n = 185)$	PS Group (n =185)	p Value	
Intra-procedural				
Acute closure	0 (0)	3 (1.6)	0.248	
Cardiac death	0 (0)	0 (0)	1.000	
Emergent CABG	0 (0)	0 (0)	1.000	
Needing IABP	0 (0)	0 (0)	1.000	
MI	0 (0)	3 (1.6)	0.248	
In-hospital				
Cardiac death	1 (0.5)	0 (0)	0.500	
MI	6 (3.2)	4 (2.2)	0.751	
CABG	0 (0)	0 (0)	1.000	
TLR	1 (0.5)	1 (0.5)	1.000	
TVR	1 (0.5)	1 (0.5)	1.000	
MACE	6 (3.2)	4 (2.2)	0.751	
Stent thrombosis definite	4 (2.2)	1 (0.5)	0.372	
Procedural success	179 (96.8)	173 (93.5)	0.217	
At 6-month				
Cardiac death	1 (0.5)	2 (1.1)	1.000	
MI	6 (3.2)	4 (2.2)	0.751	
CABG	0 (0)	1 (0.5)	0.500	
TLR	2 (1.1)	6 (3.2)	0.284	
TVR	3 (1.6)	8 (4.3)	0.220	
MACE	6 (3.2)	11 (5.9)	0.321	
Stent thrombosis definite	4 (2.2)	1 (0.5)	0.372	
At 12-month				
Cardiac death	2 (1.1)	2 (1.1)	1.000	
MI	6 (3.2)	4 (2.2)	0.751	
CABG	0 (0)	1 (0.5)	0.500	
TLR	8 (4.3)	24 (13.0)	0.005	
TVR	12 (6.5)	27 (14.6)	0.017	
MACE	19 (10.3)	32 (17.3)	0.070	
Stent thrombosis	5 (2.7)	2 (1.1)	0.449	
Definite	4 (2.2)	1 (0.5)	0.372	
Possible	1 (0.5)	1 (0.5)	1.000	

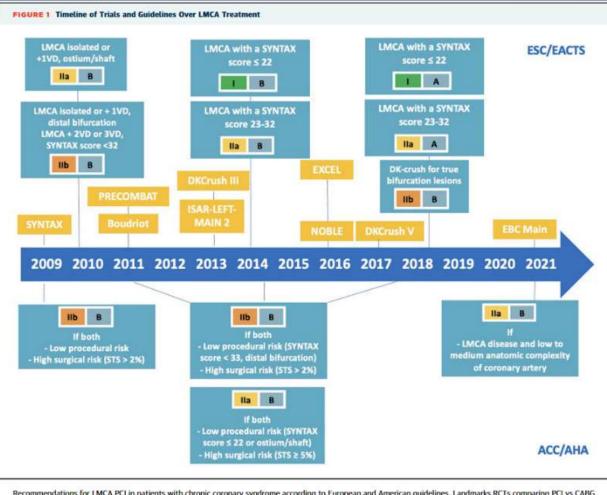
IABP = intra-aortic balloon pumping; MACE = major adverse cardiac event(s); TLR = target esion revascularization; TVR = target vessel revascularization; other abbreviations as in Table 1.



Chen et al, JACC. 2011 Feb 22;57(8):914-20.



Giuseppe Di Gioia et al, JACC Cardiovasc Interv. 2020 Jun 22;13(12):1432-1444.


Giuseppe Di Gioia et al, JACC Cardiovasc Interv. 2020 Jun 22;13(12):1432-1444.

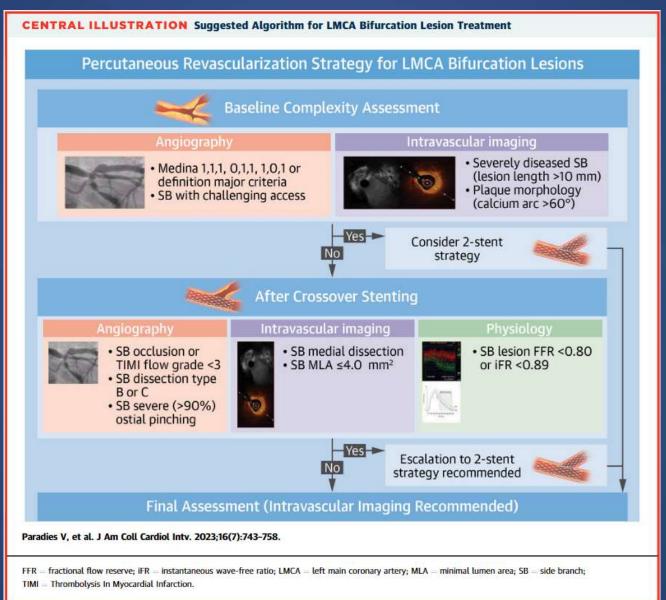
(Left) Forest plot with studies reporting side branch (SB) lesion length <10 mm. The summary estimate shows no difference between 1- and 2-stent bifurcation percutaneous coronary intervention (PCI) strategies. (Right) Forest plot with studies reporting SB lesion length \ge 10 mm. The summary estimate favors 2-stent bifurcation PCI techniques. BBK I – Bifurcations Bad Krozingen I; CACTUS – Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents; CI – confidence interval; EBC TWO – European Bifurcation Coronary Two; NBS – Nordic Bifurcation Study; NBBSIV – Nordic-Baltic Bifurcation Study IV; other abbreviations as in Figure 2.

Provisional Strategy for Left Main Stem Bifurcation Disease - A State-of-the-Art Review of Technique and Outcomes

Recommendations for LMCA PCI in patients with chronic coronary syndrome according to European and American guidelines. Landmarks RCTs comparing PCI vs CABG for LMCA disease, PCI strategies and second generation DES comparison for LMCA treatment are also displayed. DKCrush III – Double Kissing Crush III; DKCRUSH-V – Double Kissing Crush V; EACTS – European Association for Cardio-Thoracic Surgery; EBC MAIN – European Bifurcation Club Left Main Coronary Stent; ESC = European Society of Cardiology; EXCEL = Evaluation of XIENCE Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization; ISAR-LEFT-MAIN 2 – Interventional Research Incorporation Society-Left MAIN Revascularization-LEFT-MAIN 2; LMCA – left main coronary artery; NOBLE – Nordic-Baltic-British Left Main Revascularization Study; PRECOMBAT – Premier of Randomized Comparison of Bypass Surgery Versus Angioplasty Using Sirolimus-Eluting Stent in Patients with Left Main Coronary Intervention With Taxus and Cardiac Surgery; VD = vessel disease;

1023 TCTAP 2023

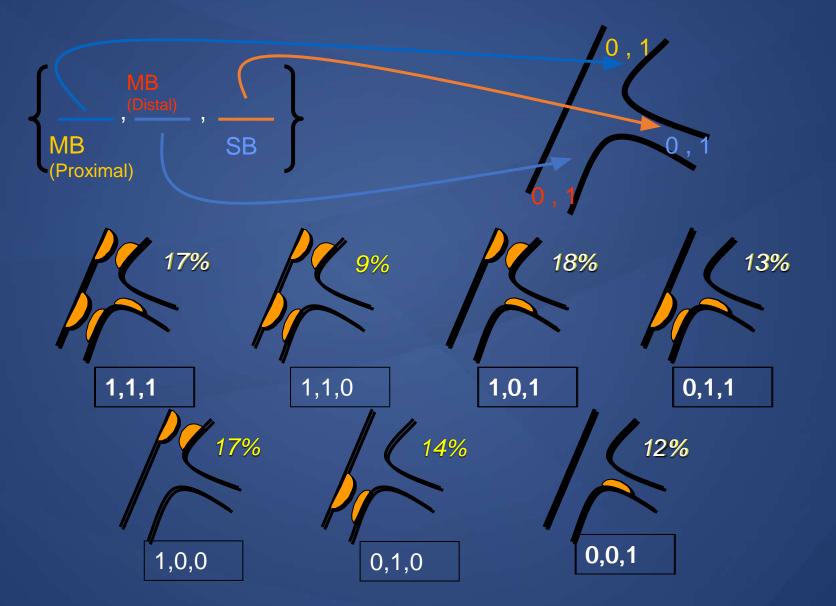
Provisional Strategy for Left Main Stem Bifurcation Disease - A State-of-the-Art Review of Technique and Outcomes


TABLE 2 Overview of Different Definitions for Suboptimal LCx Result

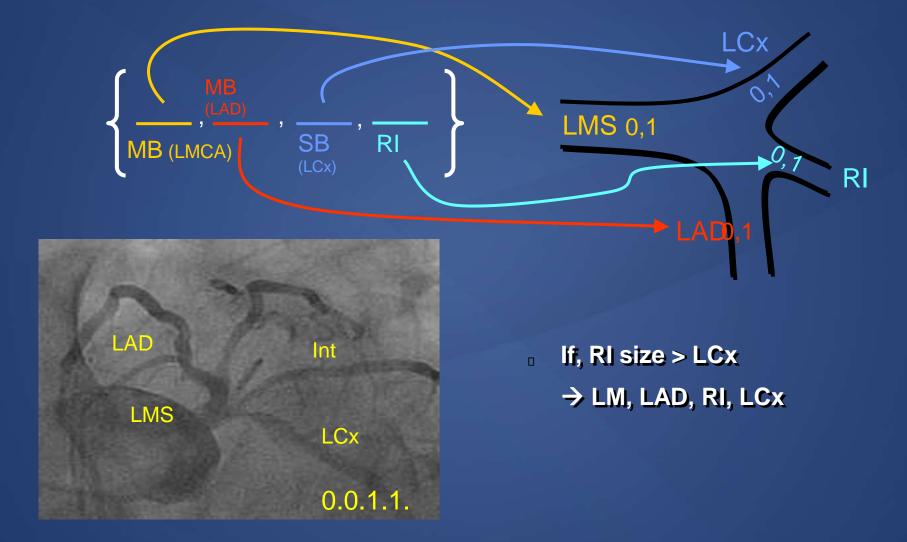
Study or First Author (Year)	Design	n	LM (%)	True Bifurcation Lesions (%)	Stenting Strategy	Suboptimal LCx Result Requiring Any Further Intervention (%)	Modality of Assessment	Definitions of Suboptimal LCx Results
SMART-STRATEGY (2016) ²⁴	RCT	258	44.0	66.0	Provisional + bailout TAP Conservative vs aggressive	47.0 (whole cohort)	Angiography	DS >75% (conservative strategy) DS >50% (aggressive strategy)
DKCRUSH-V (2017) ⁵	RCT	482	100	100	Provisional vs DK crush	47.0 (provisional group)	Angiography	TIMI flow grade <3 or DS >75% or dissection type >B
EXCEL subanalysis (2018) ¹⁸	Subanalysis of RCT	529	100	34.3 (PCI group)	Provisional + bailout 2 stents (65.0) vs elective 2 stents (35.0)	22.0 (provisional group)	Angiography Intravascular ultrasound Fractional flow reserve	Dissection ≥grade B or TIMI <3 or DS >70% angiographic MLA ≤4.0 mm ² with PB >60% ≤0.80
DEFINITION II (2020) ⁴	RCT	653	29.0	100	Provisional vs 2 stents	28.0 (provisional group)	Angiography	SB occlusion or type B/C dissection or TIMI flow grade <3
EBC MAIN (2021) ²⁵	RCT	467	100	100	Stepwise provisional vs elective 2 stents	22.0 (provisional group)	Angiography	TIMI flow grade <3 or severe (>90%) ostial pinching or threatened SB closure or dissection type >A
Burzotta et al (2012) ²⁷	Prospective observational study	150	15.0	43.0	Provisional MB stenting + bailout TAP technique	18.0 (whole cohort)	3D quantitative coronary analysis	SB lumen area <50% of SB reference area
FAILS-2 substudy (2017) ²⁸	Retrospective observational study	377	100	100	Provisional vs elective 2 stents	9.7 (provisional)	Angiography	Major dissections or compromised flow
Lee et al (2019) ²⁰	Retrospective study	83	100	0	Provisional MB stenting	16.8	Fractional flow reserve	≤0.80

3D = 3-dimensional; LCx = left circumflex artery; MB = main branch; MLA = minimal lumen area; PB = plaque burden; TiMI = Thrombolysis In Myocardial Infarction; other abbreviations as in Table 1.

Provisional Strategy for Left Main Stem Bifurcation Disease - A State-of-the-Art Review of Technique and Outcomes

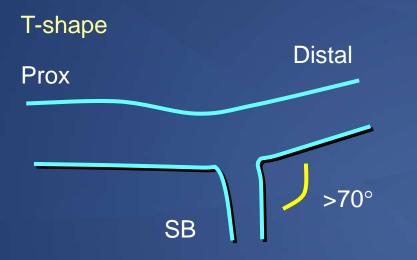


Bifurcation technique


Medina Classification

TCTAP 2023

Trifurcation



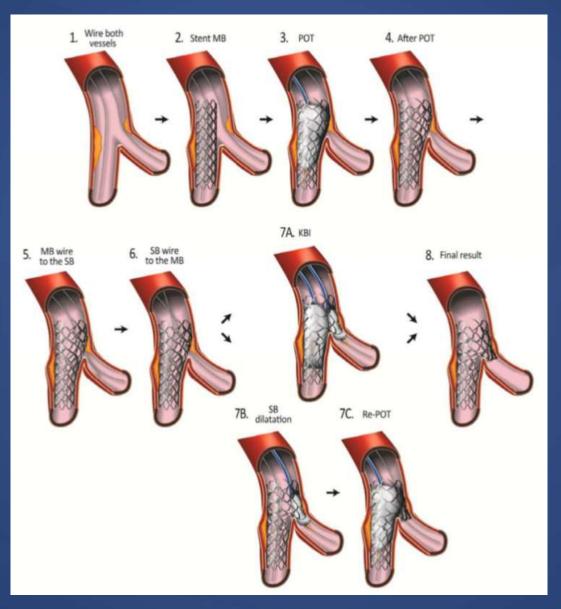
Angulation

Y-shape

Prox

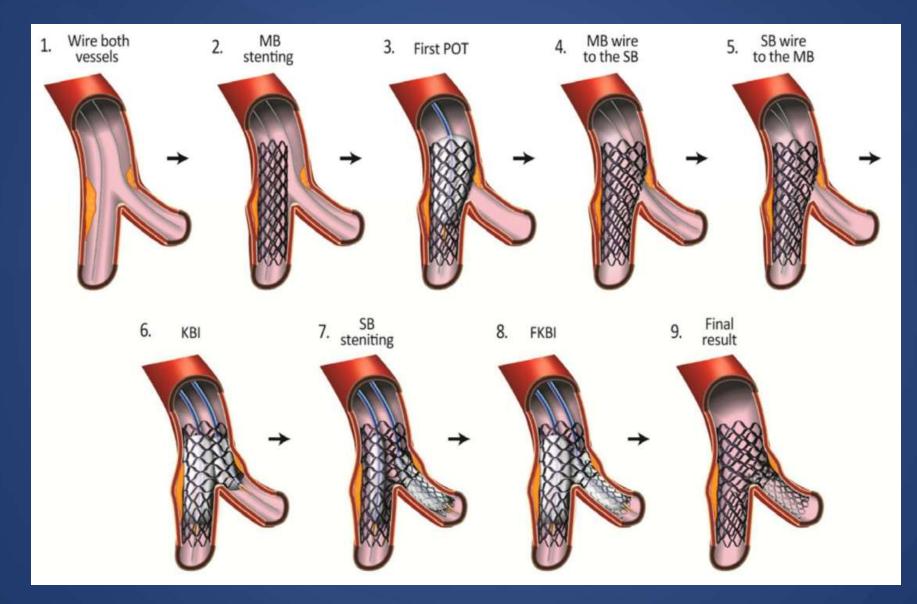
- Difficult SB access
- Less plaque shifting
- T-stenting better

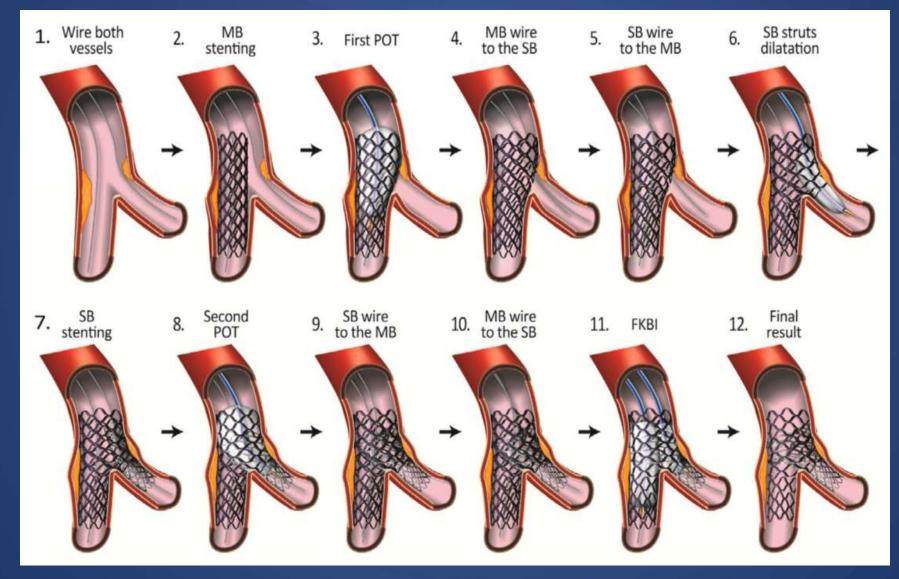
- Easier SB access
- More plaque shifting
- Cullotte or Crush better

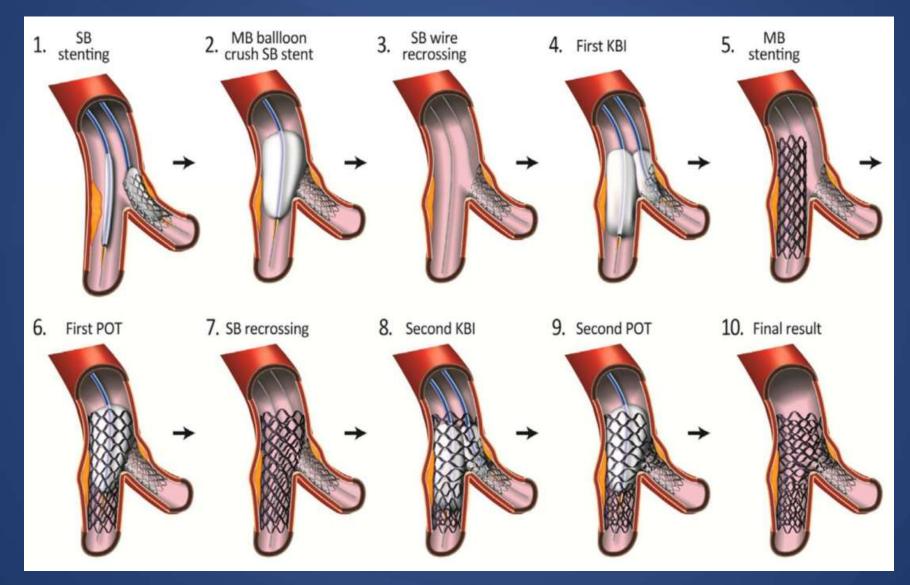

SB

Distal

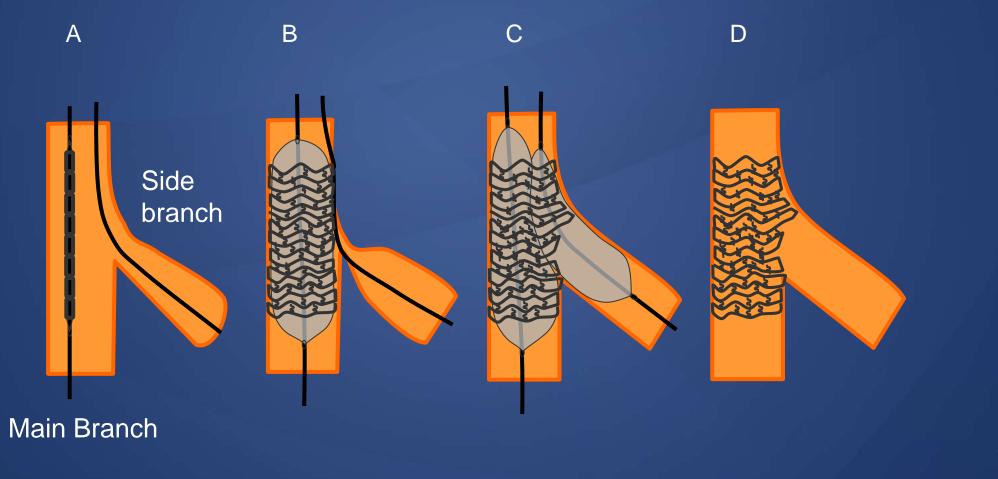
≤70°



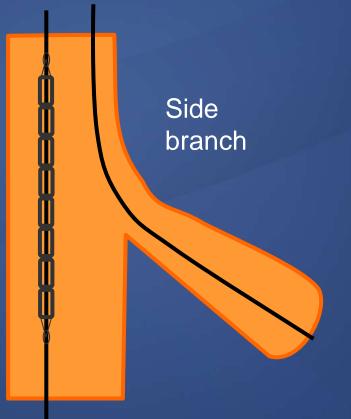

T stenting and T and protrusion (TAP)


28th TCTAP 2023

Carlos Collet et al, Expert Rev Cardiovasc Ther. 2018 Oct;16(10):725-734.


Culotte

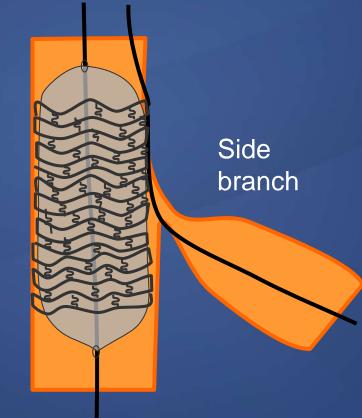
Double kissing Crush



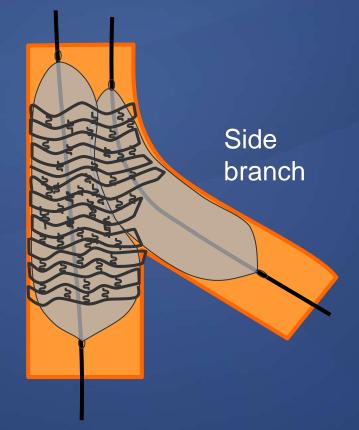
Normal or diminutive side branch ostium



A. Wire both branches and predilate if needed

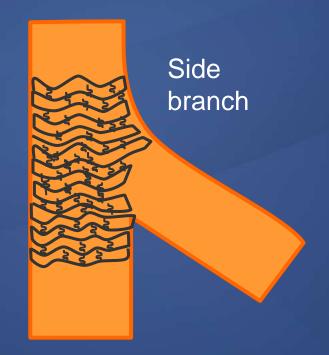


B. Stent the MB leaving a wire in the SB



Main branch

C. Rewire the SB passing through the strut of the MB stent, remove the jailed wire, dilate toward SB, and perform FKB inflation



Main branch

D. Final result

Main vessel

In cases with significant narrowing of side branch after main branch stenting Α SB stenting with Final kissing is Slightly protruded Jailed SB after minimal protrusion stent strut to MB MB stenting necessary

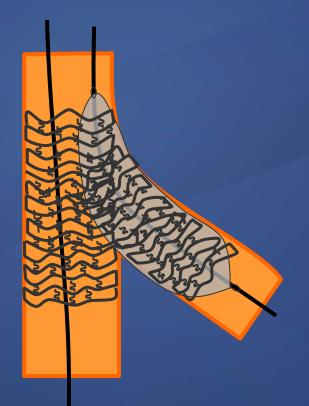
Advantages Good SB scaffolding with angles >70°

Disadvantages

Potential gap at SB ostium Protrusion of SB stent into the MB

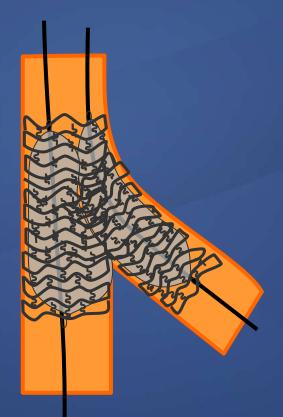
In cases with significant narrowing of side branch after main branch stenting

A. Jailed SB after MB stenting



In cases with significant narrowing of side branch after main branch stenting

B. SB stenting with minimal protrusion

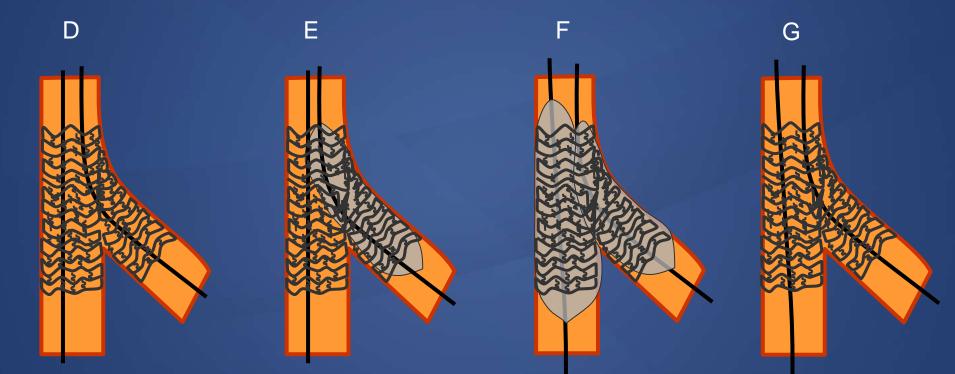


In cases with significant narrowing of side branch after main branch stenting

C. Final kissing is necessary

In cases with significant narrowing of side branch after main branch stenting

D. Slightly protruded stent strut to MB



"Internal" or "Reverse" Crush

Final kissing balloon dilatation is mandatory

Re-advancement of wire into the side branch

Opening of the side branch ostium

Final kissing balloon inflation

"Internal" or "Reverse" Crush

Final kissing balloon dilatation is mandatory

A. Jailed SB after MB stenting



Final kissing balloon dilatation is mandatory

B. SB stenting with minimal protrusion

Final kissing balloon dilatation is mandatory

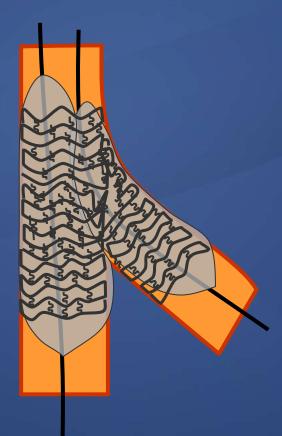
C. Remove SB balloon & wire, and inflate MB at high pressure to crush SB stent

Final kissing balloon dilatation is mandatory

D. Re-advancement of wire into the side branch

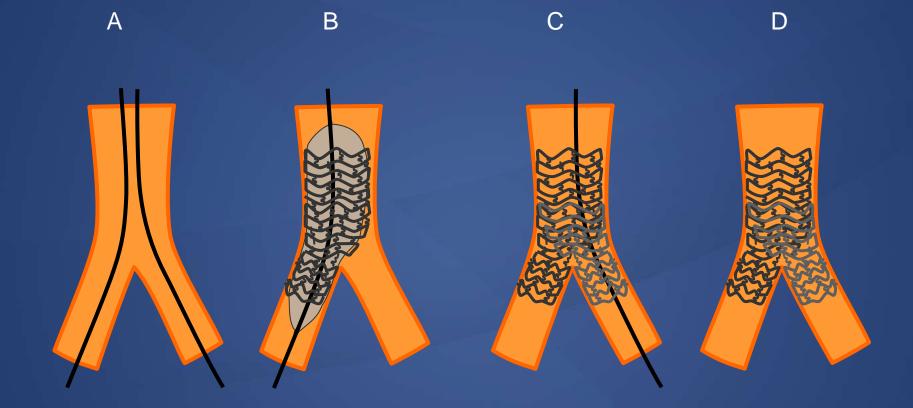
Final kissing balloon dilatation is mandatory

E. Opening of the side branch ostium



Final kissing balloon dilatation is mandatory

F. Final kissing balloon inflation


Final kissing balloon dilatation is mandatory

G. Final result

Advantages

Compatible with 6-Fr guider Independent of bifurcation angle Predictable scaffolding

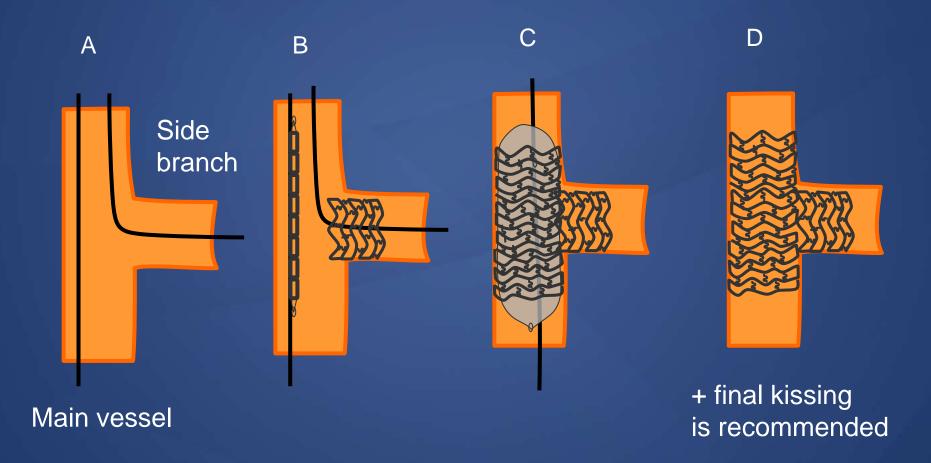
Disadvantages

Leaves multiple layers of strut Potential acute closure of MB

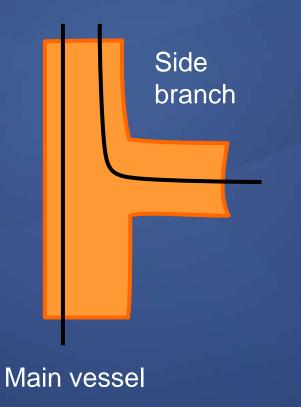
A. Wire both branches and predilate if needed

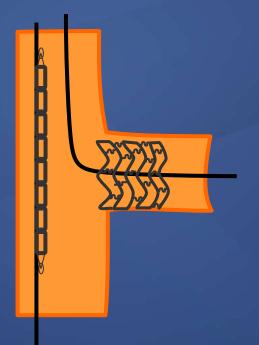
B. Deploy a stent in the more angulated branch (SB)

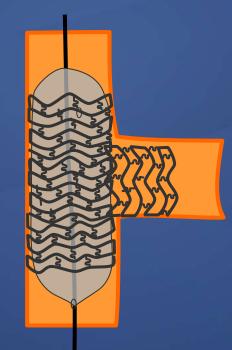
C. Rewire unstented branch, dilate the stent to unjail the MB, and expand a second stent into the unstented MB



D. Final result after final kissing balloon

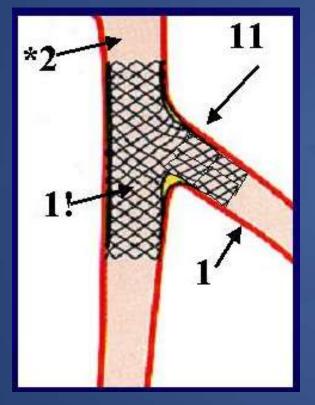



A. Wire both branches and predilate if needed


B. SB stent deployed at nominal pressure

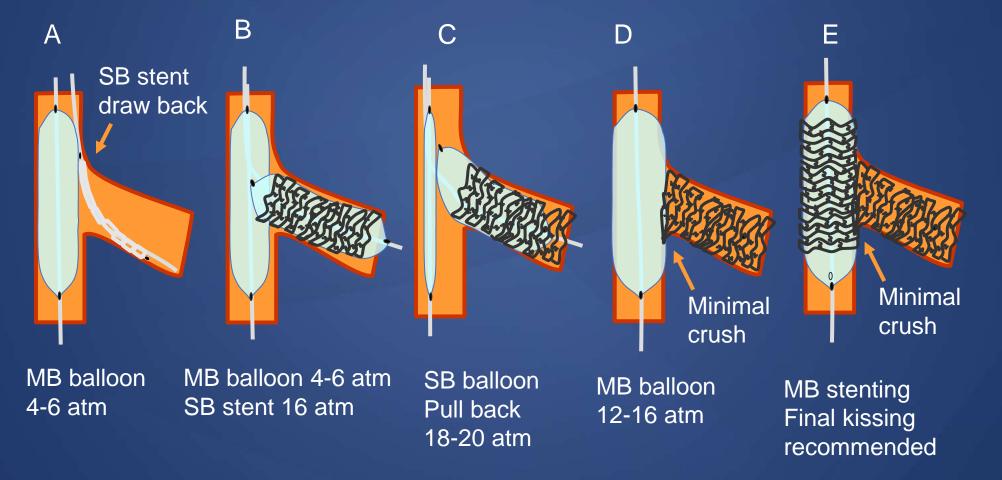
C. Remove balloon and wire from SB, And deploy the MB stent at high pressure

D. Rewire the SB and high-pressure dilatation, then final kissing inflation is recommended

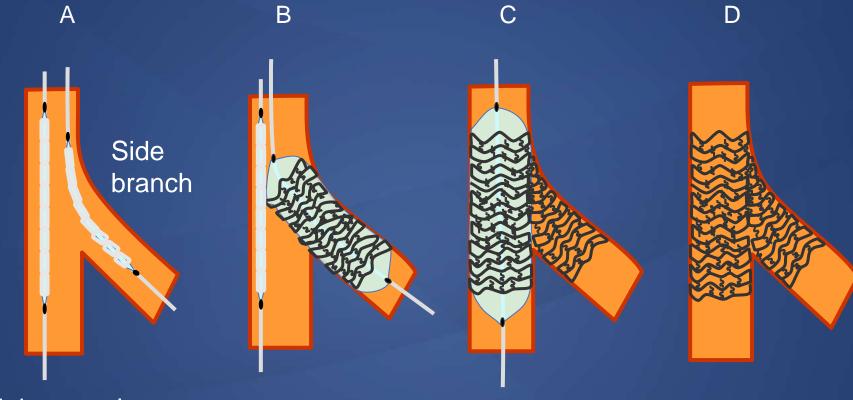


Limitation of Modified T Stenting

Restenosis site of T stenting in SIRIUS bifurcation


Potential gap without enough drug diffusion

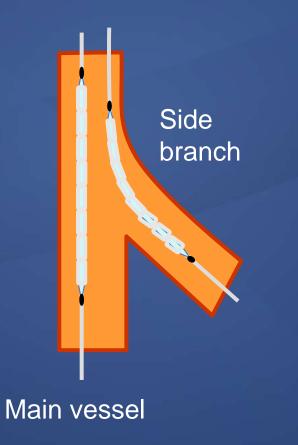
To prevent potential gap at the ostial side branch, the first stent should cover the entire surface of the side branch.



Modified T-Stenting For Proper Ostial positioning

Main vessel

Advantages


Relatively simple Low risk of SB occlusion Good coverage of SB ostium

Disadvantages

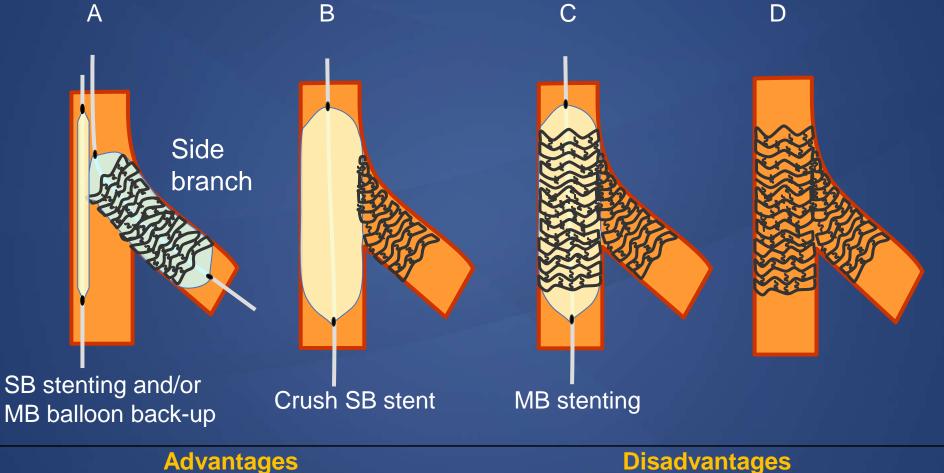
Difficult FKI Requires 7 or 8-Fr guider Leaves multiple layers of strut

A. Advance 2 stents

B. Deploy the SB stent

C. Deploy the main stent, then rewire SB and perform high-pressure dilatation

D. Perform final kissing inflation


D. Final result

Performed with 6~7Fr guiding catheter

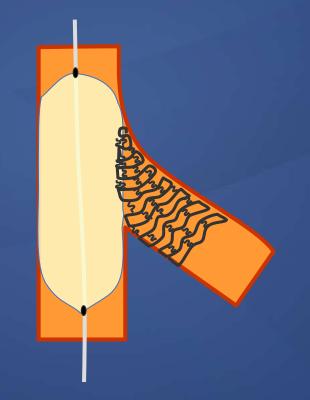
Advantages

Minimizes multi-layers of struts Good scaffolding at SB ostium **Facilitates FKI** Compatible with 6-Fr guider

Still leaves multiple layers of strut

Performed with 6~7Fr guiding catheter

A. Deploy the SB stent \pm MB balloon backup



Performed with 6~7Fr guiding catheter

B. Crush SB stent

Performed with 6~7Fr guiding catheter

C. Deploy stent in MB, then rewire SB and perform high-pressure dilatation

Performed with 6~7Fr guiding catheter

E. Perform final kissing inflation

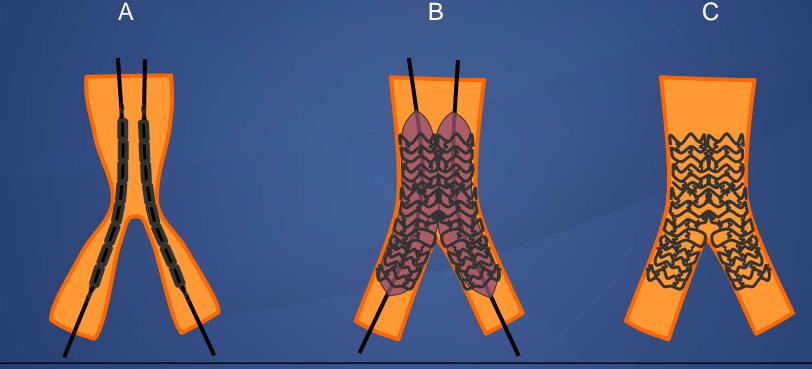
Performed with 6~7Fr guiding catheter

F. Final result

- Bifurcation without stenosis proximal to the bifurcation
- Short LM
- Less angle

A. Position 2 parallel stents covering both branches with a slight protrusion into the proximal MB

B. Deploy 2 stents individually (or simultaneously)



C. Perform high-pressure sequential single stent postdilation, Then medium pressure final kissing inflation

- Large proximal reference
- Bifurcation with stenosis proximal to the bifurcation

Advantages

No risk of occlusion for both branches No need to re-cross any stent Technically easy and quick

Disadvantages

Requires 7- or 8-Fr guider Leaves long metallic carina Over-dilatation in proximal MB Diaphragmatic membrane formation Difficulty in repeat revascularization

A. Position 2 parallel stents covering both branches with a long double barrel protrusion into the proximal MB

B. Deploy 2 stents

C. Perform final kissing inflation resulting a new metallic carina

