2014 TCTAP Wrap-Up Interview

Invasive Imaging

Moderator Gary S. Mintz

Interviewees Takashi Akasaka, Akiko Maehara, Evelyn Regar

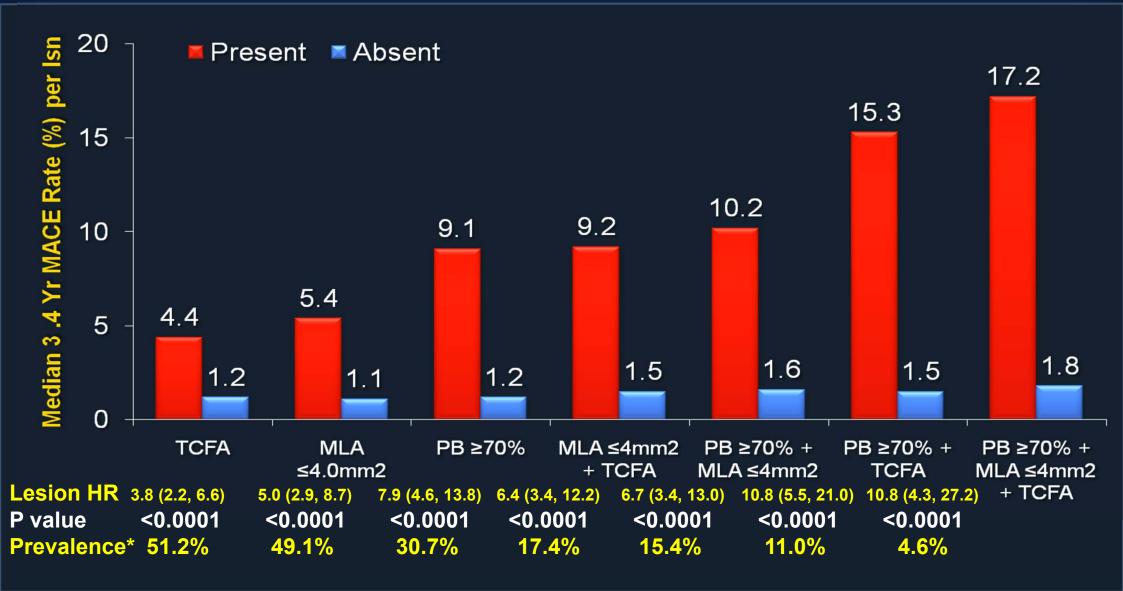
Issues in Brief

- VH-IVUS: PROSPECT/VIVA/ATHEROREMO Study
- OCT: OCT guided PCI
- NIRS: Current Status and Ongoing Studies
- IVUS: Attenuated Plaque

Definition of Vulnerable Plaque

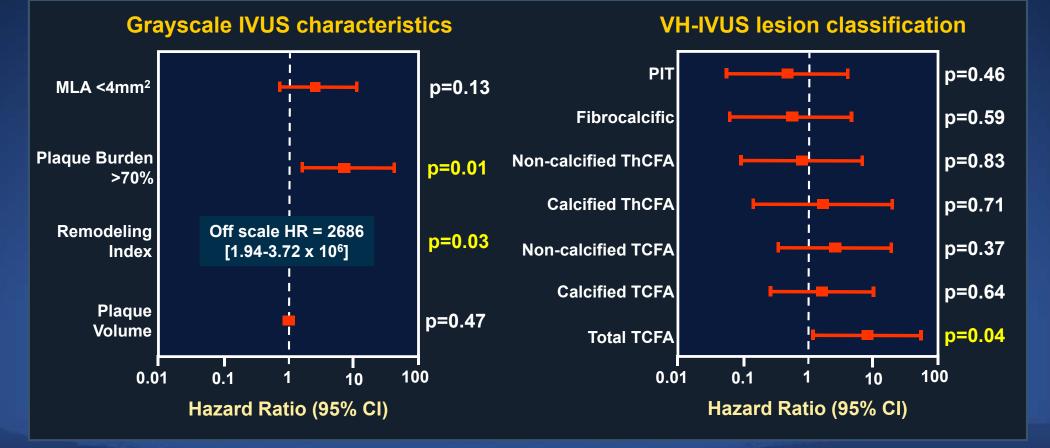
Major criteria

- Active Inflammation
- Thin Cap with Large Lipid Core
- Endothelial Denudation with Superficial Platelet Aggregation
- Fissured Plaque
- Stenosis >90%



PROSPECT Correlates of Non Culprit Lesion Related Events

COLLEGE MEDICINE

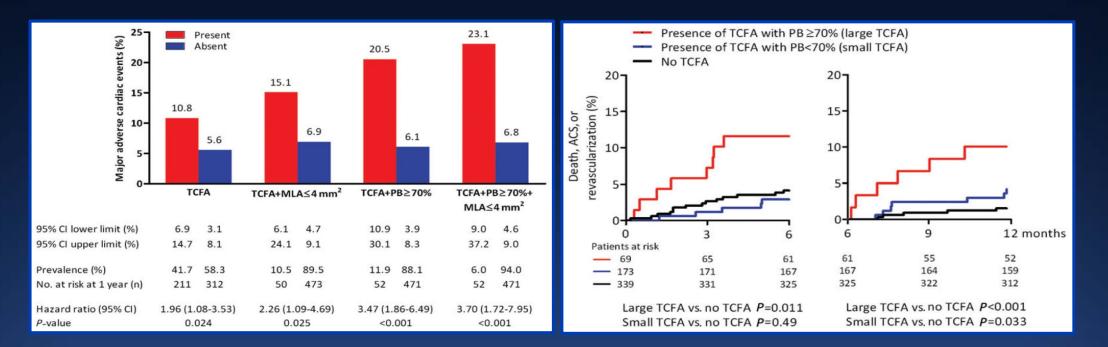

ASAN Medical Center

CVRF

VIVA Study

167 pts; 3-vessel VH-IVUS; 625 days

18 MACE (death [2], MI [2] or revasc [14]) in 16 pts from 19 lesions (13 nonculprit lesions and 6 culprit lesions) Univariate predictors of non-culprit MACE


TCTAP 2014

Calvert PA et al. JACC Img 2011;4:894-901

UNIVERSITY OF ULSAN

ASAN Medical Center

CVRF

- A VH-TCFA (present 10.8% vs. absent 5.6%; adjusted HR: 1.98, P=0.026) and a plaque burden ≥70% (present 16.2% vs. absent 5.5%; adjusted HR: 2.90, P<0.001), but not the presence of lesions with an MLA ≤4.0mm², were independently associated with MACE.
- Risk for MACE was further increased if the VH-TCFA lesions had a MLA ≤4.0mm², plaque burden ≥70%, or a combination of these three characteristics
- VH-TCFAs with a plaque burden ≥70% were associated with a higher MACE rate both in the first 6 months (P=0.011) and after 6 months (P<0.001), while smaller TCFA lesions were only associated with a higher MACE rate after 6 months (P=0.033)

Cheng et al. Eur Heart J, in press

Which One is Better?

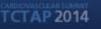
IVUS guided PCI

ADAPT DES

Witzenbichler et al. Circulation 2014;129:463-70

4 Meta-Analysis

Zhang et al. Eurointervention 2012;8:855-65 Kersy C et al. Int J Cardiol 2013;170:54-63 Jang et al. JACC Cardiovasc Interv 2014;7:233-43 Ahn et al. Am J Cardiol 2014;113:1338-47

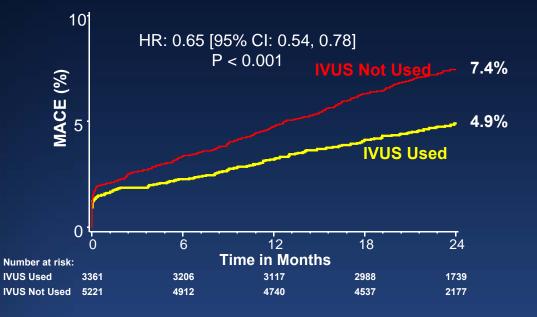

OCT guided PCI

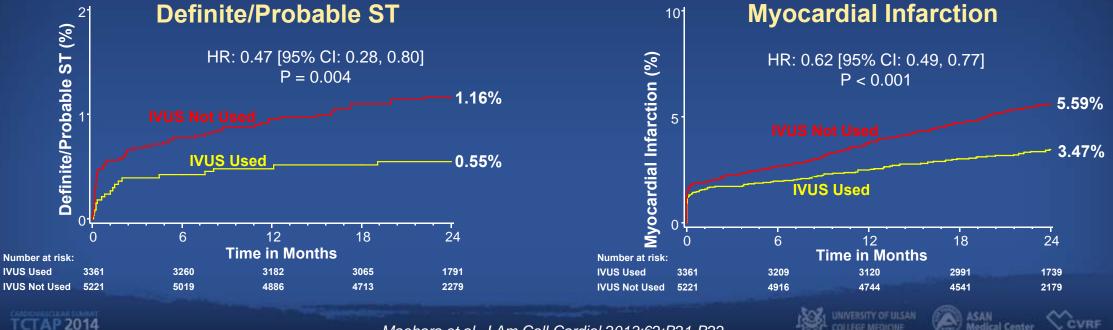
CLI-OPCI

Prati F et al. EuroIntervention 2012;8:823-9

OCT vs IVUS guided PCI

Habara et al. Circ Cardiovasc Interv. 2012;5:193-201




Four meta-analyses have assessed IVUS vs angiography-guided DES implantation

					HR (p-values)					
Reference	Yr	RCT	Non- RCT	Pts	MACE	Death	MI	ST	TLR	TVR
Zhang et al Euroin tervention	2012	1	10	19,619	0.87 (p=0.008)	0.59 (p<0.001)	0.82 (p=0.13)	0.58 (p<0.001)	0.90 (p=0.3)	0.90 (p=0.2)
Propensity score m atched sub-analysis			6	5,300	0.86 (p=0.06)	0.73 (p=0.04)	0.63 (p=0.01)	0.57 (p=0.004)	0.85 (p=0.3)	0.94 (p=0.6)
Klersy et al Int J Cardiol	2013	3	9	18,707	0.80 (p<0.001)	0.60 (p<0.001)	0.59 (p=0.001)	0.58 (p=0.007)	_	95 0.8)
Jang et al. JACC Cardiovasc Interv	On-line	3	12	24,869	0.79 (p=0.001)	0.64 (p<0.001)	0.57 (p<0.001)	0.59 (p=0.002)	0.76 (p=0.01)	0.81 (p=0.01)
Propensity score ma tched sub-analysis			9	13,545	0.79 (p=0.01)	0.58 (p=0.01)	0.56 (p=0.04)	0.52 (p=0.004)	0.85 (p=0.3)	0.93 (p=0.3)
Ahn et al. Am J Ca rdiol	In press	3	14	26,503	0.74 (p<0.001)	0.61 (p<0.001)	0.57 (p<0.001)	0.59 (p<0.001)	0.81 (p=0.046)	0.82 (p=0.022)

MACE (Definite/Probable ST, Cardiac Death, MI)

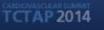
Two year follow-up data from ADAPT-DES (3361 pts treated with IVUS-guidance vs 5221 pts treated with angiographic guidance)

Maehara et al. J Am Coll Cardiol 2013;62:B21-B22

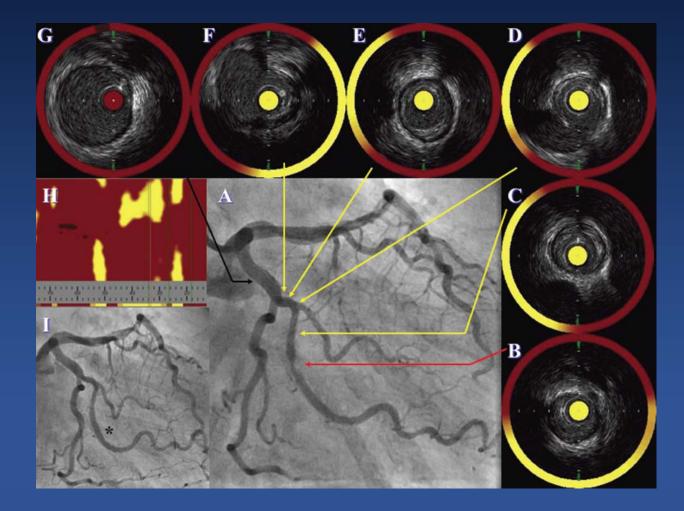
Comparison of pts undergoing PCI with "OCT guidance" vs angiographic guidance at three high-OCT-volume Italian centers: CLI-OPCI Study

One year outcomes	ОСТ	Angiography	р
#	335	335	
Death	3.3%	6.9%	0.035
Cardiac death	1.2%	4.5%	0.010
MI	5.4%	8.7%	0.096
TLR	3.3%	3.3%	1
Definite ST	0.3%	0.6%	0.6
Cardiac death/MI	6.6%	13.0%	0.006
Cardiac death/MI or repeat revascularization*	9.6%	15.1%	0.034

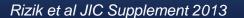
*Even after accounting for baseline and procedural differences (OR=0.49, p=0.037)



Randomized comparison of IVUS vs OCT-guided stenting with blinded cross-over imaging (n=70) showed that IVUS was superior and indicating that there is a need for a new paradigm for OCT-guided stenting

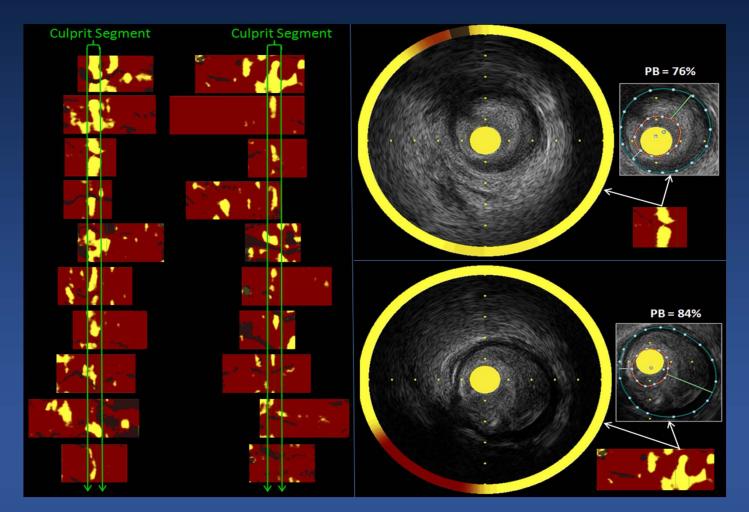

	IVUS	ОСТ	P-value
Final inflation pressure, atm	16.1±4.7	13.5±3.4	0.03
Final balloon diameter, mm	3.2±0.4	3.4±0.6	0.3
Proximal edge			
Plaque burden, %	37.1±10.1	45.7±10.9	0.001
Plaque burden >50%	8.6%	31.4%	0.04
MSA, mm ²	7.1±2.1	6.1±2.2	0.04
Focal expansion	80±13%	65±14%	0.001
Distal edge			
Plaque burden, %	33.3±6.4	40.3±8.8	<0.001
Plaque burden >50%	2.9%	11.4%	0.4

All OCT findings including the frequency of stent malapposition and the percentage of cross sections with malapposed strute were not significantly different between the groups.

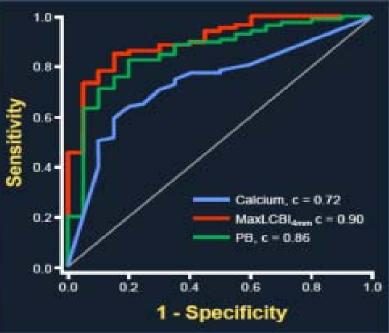


ASAN Medical Center CVRF

Near Infrared Spectroscopy Interventional Role and Emerging Data



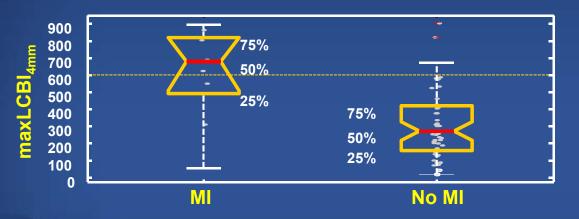
The culprit segments contained lipid rich plaque in 19 of 20 STEMI cases (95%), all with a large plaque burden.


Madder et al, JACC Cardiovasc Interv 2013;6:838-46

IVUS and NIRS were performed pre-PCI in 20 STEMI pts. Culprit lesions were compared to nonculprit segments in the same artery and to autopsy control segments.

	STEMI Culprit	STEMI Non-culprit	Histology	
#	20	87	279	lity
MaxLCBI _{4mm}	524 (445, 821)	90 (6, 265)	6 (0, 88)	Sensitiv
Plaque burden (%)	64±14	44±15	44±14	
Calcification (%)	89	38	0	

Madder et al, JACC Cardiovasc Interv 2013;6:838-46



COLOR Registry

62 pts were studied pre-PCI using NIRS. Peri-procedure MI (cTnI >3x normal) occurred in 9 pts.

Predictors	RR	р
maxLCBI _{4mm} >500	12.0	0.0002
LDL >100mg/dL	5.4	0.03
Angiographic complex lesion	3.5	0.15
Angiographic DS >75%	3.1	0.14

Peri-procedural MI - defined as an elevation >5× the ULN for either CPK-MB or Troponin I occurred in 21.6% of 88 pts with normal baseline biomarkers

- No differences in clinical or angiographic variables
- The best cut-off of maxLCBI_{4mm} for detecting peri-procedural MI was 524 (AUC=0.672) with a specificity of 63% and a sensitivity of 78%.
- Peri-procedural MI occurred in 17 of 69 pts (24.6%) with maxLCBI_{4mm} <500 compared with 12 of 19 pts (63.2%) with maxLCBI_{4mm} \geq 500 (p=0.002). The relative risk of peri-procedural MI for pts with maxLCBI_{4mm} \geq 500 was 5.2 (95% CI 1.8 to 16.2, p=0.002).

ASAN Medical Center

Goldstein et al. Circ Cardiovasc Interv 2011;4:429-437

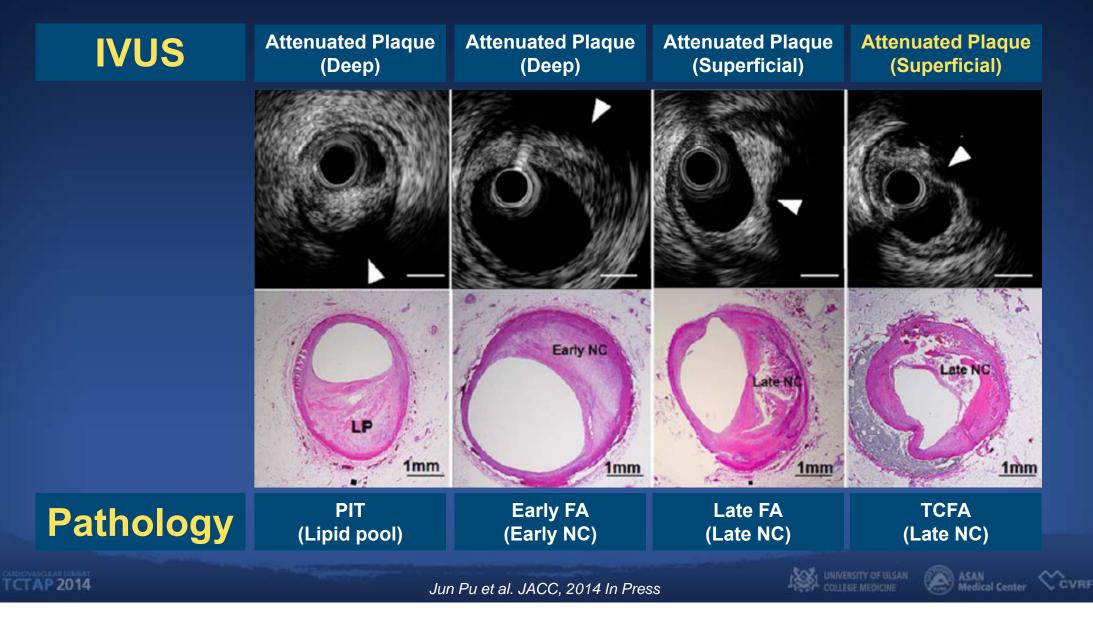
Dohi et al. ACC2014

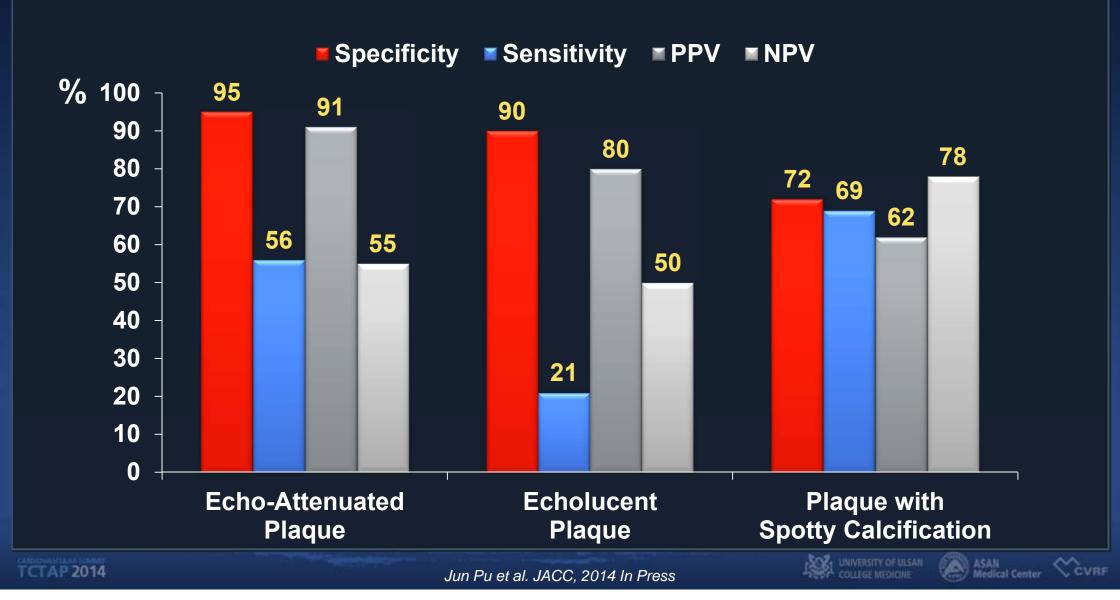
Near Infrared Spectroscopy

Interventional Role and Emerging Data

- **1.** Vulnerable Plaque: ACS/STEMI
- 2. Distal Embolization: COLOR registry, CANARY Study
- **3.** Stent Thrombosis
- 4. Drug Evaluation: YELLOW trial

Madder RD et al. JACC Cardiovascular Interv 2013;6:838-46 Madder RD et al. Circ Cardivasc Interv 2012;5:55-61 Goldstein JA et al. Circ Cardiovasc Interv. 2011:4:429-437 Sakhuja R et al. Circulation 2010;122:2349-2350 Kini A et al. JACC 2013; 62: 21-9




Echo Attenuated Plaque

New Signals About Plaque Instability

Echo Attenuated Plaque

IVUS findings and Pathological Lipid/Necrotic Core

Discussion

- Risk Prediction Based on Intracoronary Imaging
- OCT Guided PCI
- Clinical Roles of NIRS
- Echo-Attenuated Plaque
- Future Perspective of Intracoronary Imaging

